
Lest We Forget: Cold-Boot Attacks on Scrambled DDR3 Memory

Johannes Bauer∗, Michael Gruhn, Felix C. Freiling

Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Martensstr. 3, 91058 Erlangen, Germany

Abstract

As hard disk encryption, RAM disks, persistent data avoidance technology and memory-only malware become more
widespread, memory analysis becomes more important. Cold-boot attacks are a software-independent method for such
memory acquisition. However, on newer Intel computer systems the RAM contents are scrambled to minimize undesirable
parasitic effects of semiconductors. We present a descrambling attack that requires at most 128 bytes of known plaintext
within the image in order to perform full recovery. We further refine this attack using the mathematical relationships
within the key stream to at most 50 bytes of known plaintext for a dual memory channel system. We therefore enable
cold-boot attacks on systems employing Intel’s memory scrambling technology.

1. Introduction

For several reasons, the contents of volatile memory
(RAM) are a valuable piece of digital evidence during a
forensic investigation. Firstly, the keys for full disk encryp-
tion are usually stored in RAM. Extracting such keys from
a memory snapshot therefore allows to access contents of
encrypted storage that would be inaccessible otherwise.
Secondly, a plethora of other information about the cur-
rent system state can be recovered from RAM, including
ephemeral cryptographic communication keys, the list of
running processes and the details of active network con-
nections. Last but not least, new forms of memory-only
malware can only be analyzed while they are active in
memory. So overall, with the increasing use of encryp-
tion technology, cloud storage and memory-only malware,
forensic memory image acquisition has become increasingly
important.

There has been a lot of debate on how to properly per-
form imaging of volatile memory since there exist a variety
of options [2]. One commonly chosen option is runtime
acquisition via software using specific memory acquisition
tools like WinPmem1. While this method appears conve-
nient in many cases, memory imaging may be manipulated
by malware that hides in inaccessible memory regions [3],
thus creating a memory image that is not forensically sound.
Another problem of software acquisition methods is that
they operate concurrent to regular system activity and
therefore produce inconsistencies that do not occur in “per-
fect” memory snapshots [4]. A generic option that avoids

∗Corresponding author
Email addresses: johannes.bauer@cs.fau.de (Johannes Bauer),

michael.gruhn@cs.fau.de (Michael Gruhn),
felix.freiling@cs.fau.de (Felix C. Freiling)

1http://www.rekall-forensic.com/

these problems is to perform a so-called cold boot attack.
These attacks exploit the remanence effect of modern RAM
technology.

Modern RAM technology is commonly based on dy-
namic random access memory (DRAM), a type of RAM
in which the cells which store data are constituted of an
array of capacitors. Each capacitor is either charged or dis-
charged, depending on whether the cell bit is set or cleared.
Since capacitors have a leakage current, their data content
slowly dissipates over time. Therefore, in order to effec-
tively use DRAM, each and every cell has to be periodically
refreshed. This is achieved by reading the contents and
writing it back to the RAM chip. The time that DRAM
will keep its contents without leakage affecting the content
is referred to as retention time. The fact that the retention
time is nonzero and that memory will keep its contents
for a while even when it is not actively refreshed, is often
referred to as the remanence effect. It is well-known from
electrical engineering that the leakage current of capacitors
grows exponentially with their temperature [5]. Therefore
the retention time of RAM dramatically decreases with
increased chip temperature.

Cold boot attacks exploit the remanence effect and can
be executed in two ways: One way [6] is to reset the tar-
get computer by using the reset button and boot from an
alternative medium such as USB using a special imaging
USB stick that contains only a minimal operating system
together with imaging software such as memimage [6]. Ide-
ally, the original contents of RAM are maintained and can
be recovered, apart from those parts that have been over-
written by the acquisition software. Unfortunately, such
an attack is easily thwarted by using trivial protection
mechanisms like BIOS passwords.

The other way to perform cold boot attacks is to physi-
cally “transplant” the RAM module at runtime from the

Preprint submitted to DFRWS EU September 20, 2016

http://www.rekall-forensic.com/

device under investigation into an acquisition computer
and perform image extraction on that second computer.
When the semiconductors are properly cooled before trans-
plantation, they will retain most of their content. It is
therefore beneficial to freeze the DRAM modules using
cooling spray in order to increase the remanence effect. To
the best of our knowledge, this second form of cold boot
attack is paradigmatic for the class of memory acquisition
procedures since it combines genericity, availability and
offers the highest level of integrity and atomicity for the
acquired memory images [2, 4].

While the remanence effect itself is already well-studied
[7, 8], Halderman et al. [6] were the first to exploit it
to attack full disc encryption systems on desktop PCs.
However, it has been shown that cold boot attacks also
affect a multitude of other devices such as smart phones [9].
The dominating RAM technology at that time was called
DDR2. Recently, however, Gruhn and Müller [10] reported
that the results of Halderman et al. [6] could not be repeated
with the more modern DDR3 RAM technology. Even worse,
the memory images obtained from cold booting DDR3
devices appeared to be random for reasons inherent in that
technology.

With increasing speed of semiconductors, their unde-
sirable parasitic effects also grow in magnitude. Current
spikes and electromagnetic interference in the speed cat-
egories of DDR3 start to affect reliability and regulatory
compliance. To counteract this, RAM manufacturers in
general and Intel in particular perform memory scrambling
in DDR3 memory controllers. As we explain later (and
as observed by Gruhn and Müller [10]), these scramblers
severely limit the potential of forensic image acquisition.
While Lindenlauf, Höfken and Schuba [11] performed mea-
surements of the remanence effect magnitudes with DDR3
memory, they excluded a discussion of memory scrambling.
So, to the best of our knowledge, there is no published
work which investigates the possibilities of performing cold
boot attacks on modern DDR3 systems in general, i.e.,
possibilities to “descramble” the scrambler effects.

Van Zandwijk [12] recently performed some related
work using an analytic approach to descrambling NAND
flash chips. Their approach, however, is unfortunately not
easily transferable to RAM acquisition since they require
error-free source bit streams which cannot be guaranteed
for a cold boot process. Faintly related is also work by
Rahmati et al. [13] which use the remanence effect in a
constructive way to increase security of embedded systems.
For completeness, we also mention work by Kim et al. [14]
because they also exploit physical properties of RAM semi-
conductors to provoke bit flips within the RAM modules.

To summarize, the ramification of memory scrambling
is currently not well understood and there is no general
method of performing cold boot attacks on scrambled
DDR3 memory. In this paper, we present an in-depth analy-
sis of DDR3 scrambling (using the Intel memory scrambler
as an example) and we show how to use this knowledge to
develop a practical method of descrambling DDR3 memory

in real-world scenarios.

1.1. Contributions

Our contributions which we make in this paper are as
follows:

• We present a template attack on scrambled DDR3
memory systems which requires 64 bytes of known
plaintext per memory channel (i.e., at most 128 bytes
for a dual-channel system) within the memory snap-
shot in order to yield complete descrambling of the
image.

• We refine this template attack by exploiting the math-
ematical relationships present within the key stream
to reduce the number of known plaintext bytes to
only 25 (i.e., 50 bytes for a dual-channel system).

• We present methods which can be used to deinterleave
dual-channel memory and give an algorithm which
can construct an interleaved key stream of arbitrary
length from the subkeys for each channel.

We make the source code and documentation of our research
freely available to the community at
https://anonymized.

1.2. Outline

We first give some necessary background information
in Section 2, then precisely formulate the problem of de-
scrambling DDR3 memory in Section 3. We then show how
the problem can be solved in Section 4 and present some
experimental results confirming our findings in Section 5.
We finally conclude in Section 6.

2. Background

2.1. Scrambling

Storage of bit streams which are strongly biased towards
zero or one can lead to a multitude of practical problems:
Modification of data within such a biased bit stream can
lead to comparatively high peak currents when bits are
toggled. These current spikes cause problems in electronic
systems such as stronger electromagnetic emission and
decreased reliability. In contrast, when streams without
DC-bias are used, the current when working with those
storage semiconductors is, on average, half of the expected
maximum.

Scrambling can be applied to biased bit streams to
remove these undesirable side effects. In the simplest
case such a scrambler is a pseudo-random binary sequence
(PRBS) that is added onto the input bit stream using the
exclusive or (XOR) addition. We call these devices ad-
ditive or synchronous scramblers. For the receiving side,
the inverse operation, descrambling, must be applied in
order to get the original content. A pleasant side effect of
the XOR operation is that scrambling and descrambling is
symmetric; it effectively is the same operation.

2

b1b5 b4 b3 b0b2 Out

Figure 1: LFSR with polynomial x6 + x4 + x3 + x + 1

2.2. Linear-feedback shift registers

Since the goal of scrambling is only to achieve bias
removal, cryptographic requirements need not be satisfied
by a scrambling PRBS. A solution that is often chosen
because of the simplicity and efficiency with which it can be
implemented in hardware are linear-feedback shift registers
(LFSRs). As the name suggest, these hardware building
blocks are shift registers of a fixed bit width n. At any
given point in time, the content of the register is referred
to as the internal state. The bit which is fed back to the
register on each clock cycle is a linear combination, i.e.,
XOR, of some of the state bits. Bits which are inputs to
the linear function are called taps.

Mathematically, LFSRs can be modeled as polynomials
over F2 in which the state bits b0, . . . , bn−1 represented the
polynomial coefficients. Clocking corresponds to repeated
multiplication of the whole polynomial with x and reduction
modulo the characteristic polynomial P of the LFSR.

Since an LFSR only has 2n possible states, it will always
produce a periodical bit sequence. The period of an LFSR
with a primitive characteristic polynomial is 2n − 1 and
it is generated for every nonzero initialization of the shift
register. One possible hardware instance of such a shift
register is shown in Figure 1.

2.3. DRAM

As explained before, DRAM needs to be continuously
refreshed in order to keep its content. For modern DRAM
generations such as DDR3 this process is implemented by
logic within the DRAM module itself [15]. It is, however,
triggered by the host. In Intel systems, this is the task of
the memory controller hub (MCH). While the CPU and
MCH were separate chips in early hardware generations,
the MCH is completely contained within modern CPUs.

When the retention time is exceeded – for example
because the DRAM chip is unpowered – the stored charge
of the capacitors slowly decays and the RAM takes its
ground state. The ground state is not a trivial pattern
of, for example, all zero bits, but depends on the physical
construction of the chip itself. Namely, whether the stati-
cally connected sides of the cells are biased against GND
or against the positive supply voltage, Vcc. The memory
pattern that a DRAM chip will therefore show when it far
exceeded its retention time is heavily dependent on the
physical semiconductor construction.

Another important aspect is the mapping between phys-
ical addresses and physical storage location within memory
modules. When more than one memory module is present
in a computer, the RAM is usually operated in so-called
dual-channel mode. In this mode, consecutive data is alter-
nated in a certain pattern between modules. This is done

Memory Controller Hub (within CPU)

DDR3
Memory Chip

data

address

seed

LFSR

write

address

LFSR

data

read

scrambler

descrambler

memory bus

write
request

read
request

Figure 2: Schematic display of a Intel DDR3 scrambler

for performance reasons, as it allows use of two memory
modules in parallel.

2.4. LFSR RAM Scrambling

We now take a look at the actual process implemented
by the MCH construction of Intel. As the authors explain
in the patent on the topic, their aim is to reduce both
electromagnetic interference (EMI) and current spikes by
scrambling [16, 17].

In order to achieve this, they use a set of parallel LFSRs
which generate a PRBS that is XORed with the data.
Therefore the data on the memory bus appears to be ran-
dom and ideally exhibits no bit-bias. To be able to generate
the PRBS for an arbitrary memory location, a short secret
value, the so-called seed, is chosen on first power-up. Upon
a read or write request to the RAM, this seed is mixed
together with the memory address that the request was
made to. Figure 2 illustrates this process schematically.
This combined value then serves as the parameterization
of the LFSR that generates the PRBS for the requested
memory access. In this way, it is possible for the MCH
to create the required PRBS for every random memory
request. While the Intel patent [17] gives an example seed
calculation in which only the lesser significant bits of the
address are involved to parameterize the localized PRBS,
it is unclear if this is indeed the method that is used in
practice.

Note that when memory is operated in dual-channel
mode, as explained in Section 2.3, each of the two channels
will have its own scrambler and both scramblers will also
usually have distinct seed values. They are two completely
independent hardware units.

During the boot process, the MCH is programmed by
code that is part of the computer’s firmware (i.e., the BIOS
or UEFI). It is during this initialization that the MCH
parameters – including the scrambler configuration and
scrambler seed – are programmed as well. Therefore a
reseeding of the MCH scrambler can only occur when the
computer is performing a cold start (i.e., transitions from
unpowered to powered state). In our trials, the seed was

3

never reset when the computer was merely rebooted using
the reset button.

3. Problem description

As mentioned in the introduction, one approach to
perform image acquisition is to reset the target computer
by using the reset button (thereby not reinitializing any
memory scramblers) and boot from an alternative medium
such as USB. Tools like the memimage imaging software [6]
have a sufficiently small memory footprint as to leave most
of the memory contents intact. However, such attacks are
easily thwarted using BIOS passwords for example. The
other approach is to physically transplant the RAM module
from the suspect’s computer into an acquisition computer
and perform image extraction on that second computer, as
shown in Fig. 3. It is in this case that scrambling comes
into full effect, since the contents of the RAM chip will
contain only scrambled data and the acquisition computer
cannot have the correct seed to replicate the original key
stream.

As shown in Fig. 2, all data that is passed to or from the
DRAM chips is first passed through the scrambler circuitry
within the memory controller hub. It is transparently
scrambled when writing to and transparently descrambled
when reading from RAM. Therefore at any point in time,
the RAM module will only contain a scrambled image M .
All connected peripherals will not be aware that scrambling
is even happening, but will only see the plain RAM image
P . The scrambling data stream will be referred to as K
and the connection between the three is simply an XOR
relationship, as in a stream cipher: M = P ⊕K. When
such an image is forensically acquired via means of cold
booting, the captured image is referred to as I. While
during normal operation of the computer the key K0 was
used by the scrambler, during the image acquisition phase
this key might be K1, where K0 is not necessarily equal
to K1. Fig. 3 shows this formally: During the normal use,
the plain image P is scrambled by K0 and the memory M
consists of the value K0 ⊕ P which resides in RAM:

P
K0−−−−−→

scramble
P ⊕K0 = M (1)

When the RAM module is transplanted to the analysis
machine, generally the scrambling key will be different.
We denote the new key by K1. Subsequently, during the
acquisition phase the descrambler adds K1 to the RAM
image, yielding an image

I = P ⊕K0 ⊕K1 = M ⊕K1
K1←−−−−−

descramble
M (2)

Therefore, in a cold boot scenario the descrambler does
not do what the name suggests (i.e., recover the original
plaintext image), but instead actually adds another layer of
scrambling on top of the already scrambled image. During
normal operation of the computer, K0 is equal to K1 so that

target

P
scramble

Key K0

RAM

M = P ⊕K0

I = M ⊕K1
descramble

Key K1

M

transplant

acquisition
system

Figure 3: Scrambled storage of data and image acquisition

the key streams cancel each other out and the descrambler
actually recovers the plaintext image.

Intel’s patent on their scrambler mechanics explains
that a parallel LFSR is used to generate the scrambler
bit stream K. Therefore it seems that decrypting such a
scrambled image would be a rather simple, straightforward
task. Surprisingly enough, in practice it turns out to be
more complicated than initially anticipated. This has a
number of reasons:

1. Nonexistent public documentation: All documenta-
tion that explains the registers which are used by the
memory controller hub (MCH) – the component that
contains the scrambling unit – is non-public. Parts of
the documentation which are publicly available, such
as the patents Intel has filed on the issue [16, 17], are
worded as broadly as possible to include a plethora
of different options. It is unclear which one is used
in practice.

2. Lossy image acquisition: Forensic image acquisition
when using cold boot techniques relies on the rema-
nence effect of the semiconductors. This effect is
neither guaranteed nor reliable. Bit flips occur fre-
quently as the DRAM cells lose their content. When
trying to reverse engineer the used scrambling mech-
anisms, this poses a problem since algorithms like
Berlekamp-Massey [18] for synthesis of a LFSR from
a given bit stream rely on perfect input data to pro-
duce correct results. When the algorithms are fed
noisy input they will not indicate failure, but instead
synthesize misleading output.

3. Unknown ground state: If the DRAM content of a
chip which was inactive for a long time, i.e., the
ground state of that chip G, were known, then it
would be easy to determine the pure scrambler bit
stream. We could perform a cold boot attack on a
machine that had been turned off for a long time.
While then assuming that M = G, we can determine
K = G⊕I, since for this machine the memory content
C would be equal to G and it would run through
the descrambler during forensic image acquisition.
However, the ground state G is highly dependent on

4

the actual constitution of the hardware itself and
forms a nontrivial pattern. Therefore it is difficult to
gain access to the pure scrambling bit stream.

4. Interleaved memory : Lastly, most modern systems
with more than one physical RAM chip will be con-
figured to use dual channel mode in order to improve
system performance. This means that consecutive
data will be put on alternating RAM modules in an
unknown pattern. Since each channel has its own,
completely separate scrambler instance, it must be
known which pieces of data have been scrambled by
which unit in order to perform descrambling for such
images.

4. Towards descrambling

We now describe an approach to descramble the con-
tents of a DDR3 memory image that was acquired using
cold boot. The first steps which we describe are necessary
to calculate certain parameters of the hardware that are
necessary for descrambling to work. These steps can, how-
ever, also be performed after the memory image has been
taken.

4.1. Calculating memory offsets

As mentioned before, the scrambler LFSR is parame-
terized by a global seed and (parts of) the memory address
that is accessed. It is therefore vital to know the exact phys-
ical memory address of every byte in the acquired image.
Unfortunately, not all acquisition software works reliably;
in fact, there are many examples in which areas of memory
which are inaccessible are simply skipped instead of being
correctly filled with padding data [19]. When scanning
through plaintext images in order to locate cryptographic
keys, this is not a problem. For our purposes, however, it
is not only important to get the data, but also important
to be able to pinpoint the exact storage location of that
data. Only then can we select the correct key stream offset
with which we will be able to descramble the image. In
order to work around inherent limitations of acquisition
software, we wrote a custom data placer program to store
the 64-bit physical address every 8 bytes throughout all
available memory. Then a soft reset was performed as to
not reseed the memory scrambler and a forensic image
was created with the same software which would later also
capture the data images.

Note that using this approach we would also be able to
determine the effects of memory address scrambling when
performing acquisition on transplanted memory. While
this was not the case in our experiments, there are indeed
hints in literature that this would be something that could
be expected in the future [20].

By examining these dumped images, it was easy to
identify the locations where the acquisition process was
discontinuous. These discontinuities are referred to as
hidden memory regions [21, 22]. This is expected, as the

ti
m

e

capture
RAM G⊕K0 I0

ensure ground state

capture
RAM G⊕K1 I1

ensure ground state

Figure 4: Experimental setup for image recovery.

BIOS memory map (which the acquisition software usually
relies on) only loosely correlates with the intricate details of
the actual memory mapping (which the MCH uses). As a
consequence, such forensic images may contain holes within
where hidden memory regions were present. Capturing
exactly where these discontinuities were located for any
given combination of computer and DRAM allowed us to
calculate the actual address in the original physical memory
of a given offset within the dumped memory image file.

4.2. Distinguishing the scrambler type

Now we know which addresses in physical memory map
to an acquired image file offset, but we do not yet know
about the scrambling behavior of the device under test at
all. We now show how it is possible to determine how the
scrambler is configured by the computer’s firmware.

Here is the procedure to distinguish the different scram-
bler types (see Fig. 4):

1. Turn the device completely off and leave it off for
an extended period of time (e.g., 1 minute). This
ensures that the DRAM content will definitely be the
ground state G.

2. Turn the device on and immediately perform cold
boot image acquisition.

3. Repeat these two steps twice to capture two indepen-
dent cold boot images I0 and I1.

To determine the scrambler type, it is now sufficient to
investigate the image content which has not been modified
by the BIOS or dumping software. (Note that the amount
of RAM that is overwritten by the BIOS on reboot needs
to be evaluated on an individual basis.) When analyzing
this memory, there are three possible outcomes:

1. The two captured images I0 and I1 are identical (ex-
cept for noise) and look non-random. Long sequences
of consecutive 0 and 1 bits are expected to be present
in the output. The details of the pattern depend
on the physical hardware wiring of the respective
memory cells. This finding implies that scrambling
is disabled on the machine.

5

2. The captured images are identical (except for noise),
but look random (i.e., equal distribution of all bytes
with approximately identical probability). This im-
plies that scrambling with a constant seed is used on
the machine. Note that disabled scrambling is a spe-
cial case of constant scrambling, where the constant
scrambling key stream KC = ~0.

3. The captured images look completely different and
also both look random. This implies that scrambling
with a random seed is used on the machine.

In our experiments, we did not find any machine which
disabled the scrambling feature altogether. But there were
machines of either of the two latter types. Which type a
machine belongs to is determined by the system firmware,
as explained earlier in Section 2.4. For example, we found
a system consisting of an MSI H55M-P33 mainboard with
an Intel Core i5-760 CPU to use constant scrambling, while
an Intel Core i3-3225 CPU within a MSI B75MA-P45
mainboard used random scrambling.

4.3. Attacking constant scrambling

Assume a machine that performs constant scrambling.
For such a computer, descrambling the memory contents
is not necessary in most scenarios, since the scrambling
and descrambling key K is, as the name suggest, constant
over power cycles. Therefore, K = K0 = K1 and therefore
I = P ⊕ K0 ⊕ K1 = P . The intuitive reason is that
scrambling and descrambling cancel each other out on
the same system when the key stream remains the same
for both. Therefore, if the forensic image acquisition is
performed on the same computer which also wrote the data
into the RAM, the system can be treated as if there were
no scrambling used at all. This also applies to RAM that
was transplanted from one system to another one which
uses the exact same firmware and therefore same, constant,
scrambler seed.

Unfortunately, in most practical cases the machine with
which the image recovery was performed will be different
from the computer which contains the forensically interest-
ing data. In such cases, things become more complicated.
Fortunately, for all hardware that we tested, the basic
principle of how the scrambler works was always identical,
so there is reason to assume that there currently is only
one generation of scrambling hardware available. This is
also the case which we assume and deal with here. If the
two computers use different scrambler generations, the re-
sults could vary greatly depending on the exact scrambler
mechanisms which are employed.

Assuming that the two computers use at least the same
scrambler generation and merely differ in the parameteri-
zation (e.g., the host system uses constant scrambling with
K0, but the acquisition system uses a different key stream
K1), then the captured image can simply be treated as
if it were created on a randomized scrambling system, as
described next.

4.4. Attacking randomized scrambling

Consider again the two images I0 and I1 from Fig. 4.
They both capture the same, unknown, ground state G
with different scrambling keys applied to them. In other
words,

I0 = K0 ⊕G and I1 = K1 ⊕G.

We can therefore apply a differential approach by construct-
ing the image D

D = I0 ⊕ I1 = K0 ⊕G⊕K1 ⊕G = K0 ⊕K1

By eliminating the unknown ground state from the equation
we now only deal with the differential of two unknown key
streams. Since we know that the key stream is periodic, as
explained in Sect. 2.2, it can be written as the repeated
concatenation of some unknown partial key stream S (the
subkey):

D = Sx

We then inspect chunks from this D of varying size (con-
cretely, we used powers of two from 32 . . . 1024). Using
autocorrelation on these chunks we can identify the peri-
odicity π of S within D. To do this, we define an equality
function on two bit streams X,Y of equal length:

X ≈ Y ⇐⇒ H(X ⊕ Y)

|X|
< ε

Here, H is the Hamming weight of a bit vector. Intuitively,
we consider two bit streams X,Y to be approximately equal
if and only if the average Hamming weight of their bitwise
difference is below a certain threshold ε. We group n of
these chunks into an equivalence class:

{C0, C1, . . . , Cn−1} with Ci ≈ Cj ∀ i, j ∈ {0, . . . , n− 1}

Once the periodicity π is selected correctly, only one equiv-
alence class will emerge with lots of approximately equal
differential subkey candidates Ci, all of length π. During
our experiments, we determined the smallest value for π
at which this occured to be 64 bytes.

Due to bit flips during the lossy acquisition, we still
do not, however, know S. Under the assumption that all
candidates Ci are just deviations from S caused by random
noise during acquisition, we can calculate S by performing
a majority vote on each individual bit sj of S:

sj =

0 if
n−1∑
i=0

Cij <
n
2

1 otherwise

As a result, we have the most likely subkey candidate S,
where D = K0⊕K1 = Sx. We can now use this information
to recover P using a known plaintext attack.

6

4.5. Stencil attack

From our measurements we found that on all machines
we investigated, the differential of two keys K0 and K1

exhibited a 64-byte periodicity (i.e., π = 64). This directly
enables what we refer to as the stencil attack for DDR3
descrambling. The attack works as follows:

1. Perform forensic recovery of the image that shall be
descrambled. Without loss of generality, the memory
image content M of the image P is M = P ⊕ K0.
Here, K0 is the key stream that is applied to the data
by the scrambler unit on the target system.

2. The captured image will be I = P ⊕K0 ⊕K1, with
both K0 and K1 unknown. Note that the descram-
bled image P is the information of actual forensic
interest and K1 is the key stream added by the de-
scrambler unit on the acquisition system.

3. Therefore, I = P ⊕ (K0 ⊕ K1) = P ⊕ D, where D
is still unknown. However, we know from Sect. 4.4
the periodicity π of D. Therefore, scan through
the image I at π-byte boundaries and cluster π-byte
chunks together using the approximative equality
function described above. Select a partition that has
lots of candidates: this is likely to be a pattern of all
0x00. Construct the maximum likelihood candidate
S by majority vote.

4. Construct P = I ⊕ Sx ⊕ T x where T is the known
plaintext. If the known plaintext was a chunk of
0x00, i.e., T = ~0 then P = I ⊕ Sx.

To reconstruct P , we therefore only need a known plaintext
of length π, i.e., 64 bytes in our case.

4.6. Mathematical approach

The stencil attack allows an attack to be mounted
against scrambled DDR3 memory, effectively yielding the
original image with relatively few pieces of known plain-
text required. However, we now look at the mathematical
relationships within the differential subkey stream with
the purpose of constructing a key stream from less known
plaintext.

In our approach we are limited to examination of a
differential key stream K0 ⊕ K1. This is as an inherent
limitation of performing acquisition with systems which
contain an active descrambler. During analysis, we found
some interesting congruencies within this differential key
stream. First, we partitioned the 64-byte differential key
stream stencil into 32 values of 2 bytes each. Each value
was interpreted as a little endian integer. We ended up
with 32 16-bit integer values v0, . . . , v31. We then were able
to find three 16-byte polynomials p0, p1, p2 for which 24
congruencies hold for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 2:

((v4i+j >> 1)⊕ pj) & 0x7fff = v4i+j+1

If you recall Section 2.2, this relationship can immediately
be recognized as a LFSR relationship: Two related values,
v4i+j and its adjacent word v4i+j+1 can be constructed

from each other when the first one is shifted right by one
bit (>> 1) and then has the LFSR polynomial added onto
it (⊕ pj). Note however that in this congruence we can only
determine 15 of the 16 bits of the adjacent word (& 0x7fff).
This is because it is lost when the difference between two
LFSR output streams is constructed.

These relationships are a useful additional method to
confirm the validity of key streams and aid the search for
a known plaintext in the differential memory snapshot D.
It reduces the number of known plaintext bits to less than
40 % of the original stencil attack: in our case, instead of
64 bytes we now need only (8 + 3) · 2 + 3 = 25 bytes if we
exploit the mathematical inter-stream relationships. Only
the eight initial states v4i (16 bytes), the three polynomials
p0 . . . p3 (6 bytes) and the three most significant bits in
every group of 8 bytes (total of 3 bytes) need to be known
to construct the entire differential key stream.

4.7. Deinterleaving of memory

As stated before in Sects. 2.3 and 2.4 a system with
more than one DRAM module will usually operate in dual-
channel mode to improve system performance. Each mem-
ory channel has an independent scrambler, so the attack
as described in Section 4.5 still works when it is known
which part of the memory image needs to be descrambled
with which channel key. In our experiments we determined
how the algorithm to split data between channels works in
Intel systems. Consider two channel subkeys A and B of
64 bytes each. The two basic interleaved streams Q1 and
R1, each of length 256 bytes, are defined to be:

Q1 = A2||B2

R1 = B2||A2

All further key streams are then defined recursively:

Qn = Qn−1||R2
n−1||Qn−1

Rn = Rn−1||Q2
n−1||Rn−1

This definition can be applied until one finds a Qn of
sufficient length. This Qn is then the complete key stream
K.

Since every channel subkey is 64 bytes in length, the
length of an interleaved key stream Qi is exactly:

|Qi| = 64 · 4i

Solving for i with given |Qi|:

i = log4

|Qi|
64

i.e., for a dual-channel memory system of 4 GiB, one would
choose i = 13.

The interleaving pattern for i = 6, i.e., for 4096 streams
of 64 bytes each, is graphically shown in Figure 5. It is
exactly 64 by 64 pixels (i.e., 4096 pixels) in size and every
pixel’s color indicates whether stream 0 or stream 1 is

7

Figure 5: Dual channel interleaving graphically

in effect. The stream order is shown left-to-right, top-to-
bottom.

With this knowledge, we can perform the stencil attack
even when RAM is accessed in dual channel mode. The
acquired image I has to be deinterleaved into two channel
images IA and IB which can be treated independently
before interleaving them back together to form a plain
image P .

5. Experimental results

5.1. Investigated machines

Our measurements were performed predominantly on
the Intel Core i3-3225 with a MSI B75MA-P45 mainboard.
We took care to verify that the results also apply to dif-
ferent machines. In the process, we confirmed that our
results also apply to the following combination of CPUs
and mainboards:

• Intel i5-760/MSI H55M-P33

• i5-2520M/Dell 03PH4G

• i5-2400/Esprimo P900 E90+

5.2. Applying the stencil attack

In our experiments we first started out with a single
memory module present in the target computers. We then
used our data placer code to place 512x775 pixel gray scale
images of Mona Lisa at every 1 MiB boundary. At the
space in between images we placed an easily recognizable,
distinct pattern block.

We then froze the memory module by applying cooling
spray to it until it had reached around -30◦C. Then we
cut power to the system by shutting it completely off
and restarted immediately afterwards. The latency that
our targets took from complete shutdown to new boot-up
ranged from around 2 to up to 5 seconds. We then drew
memory images using the memimage toolkit. By using the
techniques described in Section 4.5 we were able to recover
the original memory image.

You can see the results of our experiments in Figure 6.
The first image, Figure 6a shows an image acquisition that
was performed at operating temperature (about +30 ◦C).

(a) Scrambled
image captured at
+30 ◦C

(b) Scrambled
image captured at
-30 ◦C

(c) Related-data de-
scrambling

(d) Stencil
descrambling

Figure 6: Images of descrambling single-channel memory

(a) Interleaved dual
channels

(b) Deinterleaved
masked image

Figure 7: Images of descrambling dual-channel memory

8

No data could be recovered from this test, as everything
was completely decayed.

On the second image, Figure 6b, the image is shown
when it was drawn from the target after cooling to about
-30 ◦C was applied. The basic shape of Mona Lisa is still
visible, but it is distorted by a repeating pattern. This
repeating pattern is exactly the subkey stencil which we
need to apply to descramble the memory images. When
this key is unknown (because there is no known plaintext
or at least no known plaintext yet) we made a related-
data experiment, shown in Figure 6c. For this we make
the assumption that consecutive 64-byte plaintexts will
– at least to some degree – repeat within the plaintext.
Therefore the first 64-byte block was chosen as a stencil
subkey. You can see clearly that the image looks a lot
better than the completely scrambled variant, but still has
lots of distortions.

Finally, we used the method described in Section 4.5
and recovered the most probable key using majority vote
and known plaintext. This key was then applied to the
captured image, yielding a result that was, except for the
occasional bit error, very close to the original image.

5.3. Dual channel mode and decay rate

During our experiments we found the high decay rate
of DDR3 RAM when at operating temperature curious. To
verify our hypothesis that the retention time of memory
was indeed much less than what can be seen in DDR2
counterparts, we performed an experiment: We placed
two memory modules in our target PC and took care
that they were operated in dual-channel mode. Then we
placed the Mona Lisa images in RAM using our data placer
program. At this point in time, roughly every second 64-
byte block of the image is on one RAM module and every
other 64-byte block is on the other RAM module. We then
inserted a rectangular piece of 500µm PET (polyethylene
terephthalate) in between the two RAM modules to achieve
thermal isolation between them. One of the two modules –
but not the other – was then frozen by us before performing
a cold boot attack.

This experiment served a dual purpose: First, it allowed
us to confirm that the thermal dependency of DDR3 is
really as critical as we assumed it was. This is because the
only difference in the process was the temperature of the
modules – all other parameters like the power-down time
were exactly identical. Secondly, it allowed us to confirm
that our algorithm to decode dual-channel memory, as
explained in Section 4.7, worked as expected.

The results are depicted in Figure 7. On the left side,
Figure 7a shows the interleaved, descrambled, memory
image. The results verified our hypothesis: Approximately
every other row was completely decayed and shows up
as white noise in the image. Even though the image in
Fig. 7a gives a rather noisy visual impression this noise is
really only present in the parts that were acquired from
the warm RAM module. This becomes obvious when the
noisy channel is masked out according to the algorithm we

presented in Fig. 4.7. The result is Fig. 7b, a successfully
descrambled one-channel image of a RAM module that was
operated in dual-channel mode. The image shows virtually
no noise because our algorithm correctly masks out only
the module which had decayed content.

5.4. Remanence effect in DDR3

In their original paper, Halderman et al. [6] found that
DDR2 RAM exhibits a comparatively strong remanence
effect. They performed tests at operating temperature
and even without externally applied cooling to the chips,
some DDR2 chips had decay times of up to 35 seconds
before showing complete data loss. To determine these
values for DDR3 memory, Lindenlauf et al. [11] did similar
decay measurements. They found an astonishingly low bit
error rate when the modules were cooled to a temperature
between -30 ◦C and -35 ◦C and kept the RAM modules
unpowered for up to 50 seconds. It is not apparent, however,
if these long decay times were also performed with DDR3
memory or just with DDR2, and while they do show the
dependency of the decay rate on the die temperature for
DDR2 memory they omit how these results transfer to
DDR3 memory.

In our experiments, we found DDR3 memory to be much
less forgiving during cold booting. Much in contrast to
DDR2 memory it was absolutely essential for us to always
keep modules at low temperatures (around -30 ◦C) in order
to produce usable results. We observed retention times of
about 10 seconds before total decay occurred even when
such cooling was performed. At operating temperature
(around +30 ◦C) we were not able to acquire a single usable
image, because all data content had dissipated.

It is our assumption that this can be explained by
the different types of memory modules that were used
by Lidenlauf et al. compared to ours. While they used
modules that were produced in 2011, we used slightly more
recent modules (produced 2013) that were also a bit faster
(666 and 833 MHz types).

6. Conclusions and Outlook

Memory acquisition of DDR3 memory in the real-world
is more complicated than with a laboratory setup: While
in a lab setup researchers can choose systems which work
for their demonstration – systems which will usually use
constant scrambling – this luxury is not available in a real-
world scenario. On top of the intricacy of descrambling
images come practical aspects like dual-channel decoding.
Both are obstacles that are not in place to deter cold
boot attacks, but they still complicate memory acquisition
significantly in practice.

We have demonstrated that our explanations and as-
sumptions about the internal construction of the Intel
DRAM scrambler are in line with the observations we made
from our experimental results. Cracking a dual-channel
system requires only 128 bytes of known plaintext to apply

9

our stencil method and only 50 bytes if the mathematical
approach is chosen. This is a negligible amount of data
compared to the huge amount of RAM that is present in the
computer systems of today. Large chunks of the RAM will
usually be set to zero in regular operation of a computer,
be it either by the operating system or by any running
application. We further demonstrated that we are able to
correctly deinterleave RAM images. This is a prerequisite
to correct descrambling of dual-channel systems, as each
channel has an independent scrambler.

Since the operation of memory scramblers is transpar-
ent for the system during normal operation, it could well
be possible that newer MCH revisions choose to use differ-
ent mechanisms for scrambling. Of particular interest for
forensic investigation would be if our results can be applied
to DDR4 memory as well. This is something we would like
to explore in future work.

In order to improve on our attack, it would be most
interesting to mathematically attack the generated key
stream itself. Since our approach only works with differen-
tial streams we at no point in time are able to reconstruct
the original key stream – we only ever reconstruct dif-
ferential key streams. Our ideas for future work are to
utilize custom-built hardware around an FPGA develop-
ment board in order to be able to read out the raw key
stream from a cold booted DDR3 memory module. This
would then enable brute forcing of key streams by trying
different seeds, but it would also be an attack that would
be significantly more difficult than what we show in this
work.

Investing this time would be interesting not only from
an academical standpoint, but also within a real-world
scenario. The reason that scramblers are present in the
first place is because Intel deemed it necessary to limit
excessive current spikes on the memory bus and in the
memory modules. This leads us to believe that there could
be possibly exploitable detrimental effects if one could
purposefully produce these excessive current spikes. If the
scrambling key stream were known to an attacker, this
could be leveraged from any unprivileged application to
mount an attack which aims to distort RAM integrity. Since
disturbing RAM-integrity is a relevant topic and is receiving
increased attention after the inspiring row hammer attacks
of Kim et al. [14], this might prove to be a worthwhile
investment of time after all.

References

[1] R. Kipling, Recessional, The Times, July 17, 1897.
[2] S. Vömel, F. C. Freiling, A survey of main memory acquisition

and analysis techniques for the windows operating system, Digit.
Investig. 8 (1) (2011) 3–22. doi:10.1016/j.diin.2011.06.002.
URL http://dx.doi.org/10.1016/j.diin.2011.06.002

[3] J. Stüttgen, M. Cohen, Anti-forensic resilient memory acquisi-
tion, Digital Investigation 10 (2013) S105–S115.

[4] S. Vömel, F. C. Freiling, Correctness, atomicity, and integrity:
defining criteria for forensically-sound memory acquisition, Digi-
tal Investigation 9 (2) (2012) 125–137.

[5] P. Wyns, R. L. Anderson, Low-temperature operation of sili-
con dynamic random-access memories, Electron Devices, IEEE
Transactions on 36 (8) (1989) 1423–1428.

[6] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, E. W.
Felten, Lest we remember: cold-boot attacks on encryption keys,
Communications of the ACM 52 (5) (2009) 91–98.

[7] T. Hamamoto, S. Sugiura, S. Sawada, On the retention time dis-
tribution of dynamic random access memory (DRAM), Electron
Devices, IEEE Transactions on 45 (6) (1998) 1300–1309.

[8] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, An ex-
perimental study of data retention behavior in modern dram
devices: Implications for retention time profiling mechanisms,
ACM SIGARCH Computer Architecture News 41 (3) (2013)
60–71.

[9] T. Müller, M. Spreitzenbarth, Frost: Forensic Recovery of Scram-
bled Telephones, in: Applied Cryptography and Network Secu-
rity, Springer, 2013, pp. 373–388.

[10] M. Gruhn, T. Müller, On the practicability of cold boot attacks,
in: Availability, Reliability and Security (ARES), 2013 Eighth
International Conference on, IEEE, 2013, pp. 390–397.

[11] S. Lindenlauf, H. Höfken, M. Schuba, Cold boot attacks on
DDR2 and DDR3 SDRAM, in: Availability, Reliability and
Security (ARES), 2015 10th International Conference on, IEEE,
2015, pp. 287–292.

[12] J. P. van Zandwijk, A mathematical approach to NAND flash-
memory descrambling and decoding, Digital Investigation 12
(2015) 41–52.

[13] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P.
Burleson, K. Fu, TARDIS: Time and remanence decay in SRAM
to implement secure protocols on embedded devices without
clocks, in: Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12), USENIX, Bellevue, WA,
2012, pp. 221–236.
URL https://www.usenix.org/conference/

usenixsecurity12/technical-sessions/presentation/

rahmati

[14] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilker-
son, K. Lai, O. Mutlu, Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors, in:
Proceeding of the 41st annual international symposium on Com-
puter architecuture, IEEE Press, 2014, pp. 361–372.

[15] Micron, DDR3 SDRAM Datasheet for MT41J256M4,
MT41J128M4 and MT41J64M4 (2014).
URL https://www.micron.com/~/media/documents/products/

data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf

[16] C. Mozak, Suppressing power supply noise using data scram-
bling in double data rate memory systems, US Patent 7,945,050
(May 17 2011).
URL https://www.google.com.ar/patents/US7945050

[17] M. Falconer, C. Mozak, A. Norman, Suppressing power supply
noise using data scrambling in double data rate memory systems,
US Patent 8,503,678 (Aug. 6 2013).
URL http://www.google.com.ar/patents/US8503678

[18] J. L. Massey, Shift-register synthesis and BCH decoding, Infor-
mation Theory, IEEE Transactions on 15 (1) (1969) 122–127.

[19] S. Vömel, J. Stüttgen, An Evaluation Platform for Forensic
Memory Acquisition Software, in: E. B.V. (Ed.), Proceedings of
the 13th Annual DFRWS Conference, 2013, pp. 1–12.

[20] G. Gould, Address scrambling to simplify memory controller’s
address output multiplexer, US Patent 7,493,467 (Feb. 17 2009).
URL http://www.google.com/patents/US7493467

[21] J. Stüttgen, On the Viability of Memory Forensics in Com-
promised Environments, Ph.D. thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Department of Computer
Science (2015).

[22] J. Stüttgen, S. Vömel, M. Denzel, Acquisition and analysis of
compromised firmware using memory forensics, Digital Investi-
gation 12 (Supplement-1) (2015) S50–S60. doi:10.1016/j.diin.
2015.01.010.
URL http://dx.doi.org/10.1016/j.diin.2015.01.010

10

http://dx.doi.org/10.1016/j.diin.2011.06.002
http://dx.doi.org/10.1016/j.diin.2011.06.002
http://dx.doi.org/10.1016/j.diin.2011.06.002
http://dx.doi.org/10.1016/j.diin.2011.06.002
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
https://www.google.com.ar/patents/US7945050
https://www.google.com.ar/patents/US7945050
https://www.google.com.ar/patents/US7945050
http://www.google.com.ar/patents/US8503678
http://www.google.com.ar/patents/US8503678
http://www.google.com.ar/patents/US8503678
http://www.google.com/patents/US7493467
http://www.google.com/patents/US7493467
http://www.google.com/patents/US7493467
http://dx.doi.org/10.1016/j.diin.2015.01.010
http://dx.doi.org/10.1016/j.diin.2015.01.010
http://dx.doi.org/10.1016/j.diin.2015.01.010
http://dx.doi.org/10.1016/j.diin.2015.01.010
http://dx.doi.org/10.1016/j.diin.2015.01.010

	Introduction
	Contributions
	Outline

	Background
	Scrambling
	Linear-feedback shift registers
	DRAM
	LFSR RAM Scrambling

	Problem description
	Towards descrambling
	Calculating memory offsets
	Distinguishing the scrambler type
	Attacking constant scrambling
	Attacking randomized scrambling
	Stencil attack
	Mathematical approach
	Deinterleaving of memory

	Experimental results
	Investigated machines
	Applying the stencil attack
	Dual channel mode and decay rate
	Remanence effect in DDR3

	Conclusions and Outlook

