
On Inexpensive Methods for Improving
Security of Embedded Systems

Kostengünstige Maßnahmen zur Erhöhung
der Sicherheit eingebetteter Systeme

Der Technischen Fakultät der
Friedrich-Alexander-Universität

Erlangen-Nürnberg
zur Erlangung des Grades

D O K T O R - I N G E N I E U R

vorgelegt von

Johannes Bauer aus Lichtenfels

Als Dissertation genehmigt von
der Technischen Fakultät der

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Tag der mündlichen Prüfung: 25. November 2016
Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch
Gutachter: Prof. Dr.-Ing. Felix Freiling

Prof. Dr.-Ing. habil. Falko Dressler

Contents

Abstract . 1

Zusammenfassung . 3

Acknowledgment . 5

1 Introduction . 6

1.1 Security Quantification . 6

1.2 Embedded Devices as a Target . 9

1.3 Contributions . 11

1.4 Outlook . 13

2 Power Analysis . 14

2.1 Introduction . 14

2.1.1 Related Work . 16

2.1.2 Contributions . 18

2.1.3 Outline . 19

2.2 Background . 19

2.2.1 Transistors and Switching Loss . 19

2.2.2 Power Analysis . 22

2.2.3 Cortex-M Barrel Shifter . 24

2.3 Code Polymorphism as a DPA Countermeasure . 25

2.3.1 Displaced Loading . 25

2.3.2 Exclusive OR Instruction . 27

2.3.3 Register Transfer Instructions . 29

2.3.4 Bitwise Masking Instructions . 30

2.4 Efficient Runtime Recompilation . 32

2.4.1 Virtual Machine Internals . 33

2.4.2 Examples . 34

i

Contents

2.4.3 Workflow . 36

2.4.4 Hardware True Random Number Generators 38

2.5 Experimental Evaluation . 39

2.5.1 Static Analysis of Target . 39

2.5.2 Masking Results . 40

2.5.3 Entropy Collection . 43

2.6 Conclusion . 44

3 Timing Channels . 45

3.1 Introduction . 45

3.1.1 Related Work . 46

3.1.2 Contributions . 48

3.1.3 Outline . 48

3.2 Background . 48

3.2.1 Factors Influencing Execution Time in Modern CPUs 48

3.2.2 STM32 Cortex-M4 Specifics . 50

3.3 Cycle-Accurate Timing Simulation . 50

3.3.1 Execution Time Prediction . 51

3.3.2 Architectural Modeling . 54

3.4 Evaluation . 56

3.4.1 Experimental Setup . 56

3.4.2 Experimental Results . 58

3.4.3 Semi-automatic vetting . 60

3.5 Conclusion and Outlook . 61

4 Covert Channels . 63

4.1 Introduction . 63

4.1.1 Attacker Scenario: Covert Communication . 65

4.1.2 Abuse of Anti-EMI Features . 66

4.1.3 Related Work . 67

4.1.4 Contributions . 68

ii

Contents

4.1.5 Outline . 69

4.2 Background . 69

4.2.1 Electromagnetic Interference . 69

4.2.2 EMI Countermeasures . 70

4.3 Implementation of the Covert Channel . 73

4.3.1 Implementation using Spread Spectrum Clocking 73

4.3.2 Implementation using Rise Time Control . 74

4.4 Data Encoding . 75

4.4.1 Channel Capacity . 77

4.5 Practical Example . 79

4.6 Conclusion . 81

5 Hardware Trust Anchors . 83

5.1 Introduction . 84

5.1.1 Related Work . 85

5.1.2 Contributions . 86

5.1.3 Outline . 87

5.2 Background . 87

5.2.1 Transport Layer Security . 87

5.2.2 TLS with Pre-shared Keys . 88

5.2.3 Elliptic Curve Cryptography . 92

5.2.4 OMA Lightweight M2M . 97

5.3 Implementation with Symmetric Cryptography HSMs 97

5.4 Implementation with Asymmetric Cryptography HSM 102

5.5 Security Evaluation . 105

5.5.1 Security with Asymmetric Cryptography HSMs 105

5.5.2 Security with Symmetric Cryptography HSMs 106

5.5.3 Attack Scenarios and Assumptions . 106

5.5.4 Theoretic Analysis . 108

5.5.5 Practical Analysis . 109

5.6 Conclusion . 111

iii

Contents

6 DRAM Scrambling . 112
6.1 Introduction . 112

6.1.1 Contributions . 114

6.1.2 Outline . 115

6.2 Background . 115

6.2.1 Scrambling . 115

6.2.2 Linear-feedback Shift Registers . 116

6.2.3 DRAM . 118

6.2.4 LFSR RAM Scrambling . 118

6.3 Problem Description . 119

6.4 Towards Descrambling . 122

6.4.1 Practical LFSR Algorithms . 122

6.4.2 Calculating Memory Offsets . 124

6.4.3 Distinguishing the Scrambler Type . 125

6.4.4 Attacking Constant Scrambling . 127

6.4.5 Attacking Randomized Scrambling . 127

6.4.6 Stencil Attack . 128

6.4.7 Mathematical Approach . 129

6.4.8 Deinterleaving of Memory . 130

6.5 Experimental Evaluation . 130

6.5.1 Investigated Machines . 130

6.5.2 Applying the Stencil Attack . 131

6.5.3 Dual Channel Mode and Decay Rate . 133

6.5.4 Remanence Effect of DDR3 Memory . 134

6.6 Conclusion and Outlook . 135

7 Conclusion . 136
7.1 Absence of a Security Silver Bullet . 136

7.2 Security Silver Linings . 138

Bibliography . 140

iv

List of Figures

2.1 N-channel metal-oxide semiconductor field effect transistor 20
2.2 Idealized inverting CMOS output stage . 21
2.3 CMOS output stage with CGS and CGD modeled . 21
2.4 Simplified view of a 4 bit barrel shifter construction made from 16

tri-state buffers. 24
2.5 Unobfuscated version . 28
2.6 9 bit, obfuscated ror5 . 28
2.7 32 bit, obfuscated ror1 . 28
2.8 32 bit, obfuscated ror2 . 28
2.9 32 bit, obfuscated ror4 . 28
2.10 32 bit, obfuscated ror16 . 28
2.11 Internal construction of the morphing VM. 34
2.12 Exemplary state of the VM before execution of the patch opcode. 35
2.13 Applying patch r0, #13, #3, #9 with r0 = 0x2bc5 35
2.14 Shuffling of different blocks and counts. 36
2.15 Remasking workflow. 37
2.16 Number of considered power traces against peak correlation coefficient.

Black trace shows the correct key hypothesis. 41
2.17 512 kiBit of preconditioned collected entropy from PLL lock time source. . 43

3.1 Pipelined instruction execution . 49
3.2 Different execution times in dependence of copied bytes n 54
3.3 Model of our Thumb-2 emulator . 56
3.4 Work flow in the experimental setup . 57

4.1 Exemplary RS-232 transmission of a single octet . 64
4.2 Signal changes of jitter/rise time that preserve the physical property 64
4.3 Example of supply chain poisoning . 66
4.4 Illustrated rise time of a signal . 70
4.5 FFT magnitude of a 5 MHz clock signal with and without Spread

Spectrum Clocking and exemplary regulatory permissible maximum
regarding EMI . 71

4.6 Frequency of a spread-spectrum clock signal . 72
4.7 Signal differences of 50 MHz and 100 MHz drivers . 75
4.8 Ternary encoding of data bits with varying data clock rate 76
4.9 Rise time over time and the conditioned signal . 78
4.10 Notional RFID reader with its components . 80

5.1 Construction of the TLS-PSK Premaster Secret . 90
5.2 TLS-PSK master secret generation . 92

v

List of Figures

5.3 Basic layout of a symmetric HSM . 99
5.4 Key exchange using a symmetric HSM . 99
5.5 Input data for the SHA-256 function of the ATSHA204A MAC command 101
5.6 Basic layout of an asymmetric HSM based on RSA . 103

6.1 Fibonacci-LFSR with polynomial x6 + x4 + x3 + x+ 1 117
6.2 LFSR with polynomial x6 + x4 + x3 + x+ 1 . 117
6.3 Schematic display of a Intel DDR3 scrambler . 119
6.4 Scrambled storage of data and image acquisition . 121
6.5 Galois-LFSR with polynomial x12 + x11 + x10 + x4 + 1 122
6.6 Experimental setup for image recovery. 126
6.7 Dual channel interleaving graphically . 131
6.8 Images of descrambling single-channel memory . 132
6.9 Images of descrambling dual-channel memory . 133

vi

List of Tables

2.1 Bit flip count in various scenarios. 29
2.2 Number of required probes to catch all variants with certain levels of

confidence (LoC) . 33
2.3 Opcode encoding. 35
2.4 Emitted instruction groups of different cryptographic algorithms. 40
2.5 Flash ROM space demands incurred by protection mechanisms. 42
2.6 Time and clock cycle (CC) count necessary for entropy collection. 42
2.7 Protection runtime and clock cycle (CC) count. 42

3.1 Used instruction grouping . 58
3.2 Measurements showing the dynamic instruction count (Insns.) and taken

clock cycles on the target and in the emulator. Block ciphers were used
for encryption, suffix denotes the payload in bytes. 59

3.3 Detailed dynamic instruction breakdown of tests with assembly instruc-
tion grouping . 59

4.1 Examples of channel parameters for our case . 77
4.2 Theoretically achievable B under ideal conditions compared to conducted

experimental evaluation . 78

vii

Listings

2.1 Intel64 representation of a 24 bit shift. 25
2.2 Thumb-2 representation of a 24 bit shift. 25
2.3 Load of a single byte. 26
2.4 Load of three bytes. 26
2.5 Plain XOR . 27
2.6 Obfuscated XOR . 27
2.7 Plain move register to register instruction . 30
2.8 Obfuscated move register to register instruction . 30
2.9 Plain move immediate to register instruction . 31
2.10 Obfuscated move immediate to register instruction . 31
2.11 Plain bit masking instruction . 31
2.12 Obfuscated bit masking instruction . 31
2.13 Illustration of patch code run by the VM. 36
3.1 High-level memcmp routine which tries to achieve constant execution time . 51
3.2 Compiled memcmp routine in Thumb-2 assembly . 52
3.3 Activation of cycle counting on the STM32F4 . 53
3.4 Code to demonstrate wait state influence . 53
3.5 Python fuzzer test case . 60
5.1 Python code to derive a PSK . 102
6.1 Python example for a Galois LFSR . 122
6.2 Usage of the LFSR functions . 123
6.3 Algorithm to recover internal state of a Galois LFSR 124
6.4 Usage of the function to recover the internal LFSR state 125

viii

Abstract

We usually scrutinize security of embedded systems under an extraordinarily sophisticated
attacker model: the adversary has physical possession of the target and unlimited time
to break it. For the defensive side, this forms an exceptionally challenging scenario. This
thesis studies fortification of systems against such adversaries. The principal contributions
lie in the field of embedded security, where we explore methods of building secure systems
in a resource-efficient manner. This allows implementation of our countermeasures on
resource-constrained microcontrollers. While these have a detrimental effect on runtime
performance, the cost of the hardware itself remains unaffected, thereby providing an
attractive and inexpensive alternative to hardware countermeasures. Next, we will briefly
outline our contributions.
Attacks such as Differential Power Analysis (DPA) enable adversaries to exploit even the
most minute differences in data dependent energy consumption. To make it more difficult
for attackers to gain access to secrets within a chip, effective countermeasures need to be
employed. One technique, implemented using only software, is described by us as a first
contribution. We use binary recompilation to achieve binary code polymorphism. This
causes different characteristic emission patterns for each call of a protected cryptographic
primitive. Due to extensive and sophisticated pre-calculations which we perform at
compile time, execution is extremely fast during runtime.
Since not only power consumption but also timing differences are something that attackers
can exploit with great accuracy, we studied detection of timing leaks. Considering
the architecture of today’s increasingly complex microcontrollers, manual estimation
of runtime has become virtually infeasible. Therefore, as a second contribution, we
developed a behavioral Cortex-M core emulator which permits cycle-accurate simulation.
We show how to incorporate such an emulator in a semi-automatic vetting process. After
compilation, all security-relevant routines within the code are analyzed and checked for
timing discrepancies.
The complexity of modern microcontroller units (MCUs) is shown from a different
angle when considering attackers who can manipulate firmware. Since the reduction of
electromagnetic interference (EMI) is an important goal of system designers, many recent
MCUs already include software-tunable EMI countermeasures. In our third contribution,
we show how these anti-EMI peripherals can be abused to construct covert channels.
Unfortunately for the defensive side, these channels operate in the radio frequency
domain and thus could be used for wireless transmission of data — even when the benign
application was never intended to perform such communication. We describe how changes
in parasitic electromagnetic emission can be used to encode data and what hardware is
necessary to recover this data.
To increase the resistance of embedded systems against physical attacks, it is common to
use special semiconductors which employ hardware countermeasures. The downside of

1

Abstract

such integration is that the specialized device usually dictates the exact cryptographic
construction. How such hardware can be used nevertheless to augment general-purpose
microcontrollers is something we focus on with our fourth contribution. As a demon-
stration, we incorporate a hardware security module in the handshake of the transport
layer security (TLS) protocol. We do so without the need to create a custom cipher suite
and without modifying the TLS handshake itself; instead, we use a generic approach
by relying on implementation-specific protocol invariants and therefore get around the
limitations which would be imposed by nonstandard protocol modifications.

When processors make use of external peripherals, such as dynamic random access memory
(DRAM), another attack vector arises: Due to parasitic effects of the physical construction
of modern high-density RAM, it is possible that the hardware cannot guarantee data
integrity for all bit patterns. To counteract this, a technique commonly used by memory
controllers is the scrambling of data to gain an effectively bias-free bitstream on the
RAM chip. With our fifth contribution, we show how one such scrambling scheme
by Intel works in-depth and how scrambled memory can be descrambled to reveal the
original memory content. In the field of forensics, this is highly relevant: When physical
memory acquisition, for example by cold-boot attacks, is used to capture a memory
image, descrambling of that image is required before it can be analyzed meaningfully.
We furthermore discuss how knowledge about scrambler-internal workings may open up
possibilities for an attacker to deliberately cause disturbances in RAM.

2

Zusammenfassung

Die Sicherheit eingebetteter Systeme wird üblicherweise unter einem äußerst starken
Angreifermodell evaluiert: Es wird ein Angreifer angenommen, der sowohl physischen
Zugang zu der Hardware und darüber hinaus ein unbegrenztes Kontingent an Zeit hat,
um das System zu brechen. Solch ein Szenario stellt für die defensive Seite eine große
Herausforderung dar. Diese Arbeit studiert die Härtung von eingebetteten Systemen
gegen solche Angreifer. Sie kombiniert mehrere Beiträge aus dem Bereich Sicherheit
eingebetteter Systeme; im Kernteil untersuchen wir ressourceneffiziente Methoden, um
die Resistenz dieser Systeme gegen physische Angriffe zu härten. Diese sind auch auf
stark ressourcenbeschränkten Mikrocontrollern einsetzbar und beeinträchtigen in der
Regel das Laufzeitverhalten nur minimal, erhöhen aber nicht die Kosten der Hardware
selbst.

Angriffe, wie die Differential Power Analysis erlauben es Angreifern, durch statistische
Methoden kleinste datenabhängige Variationen im Stromverbrauch von Mikrocontrollern
auszunutzen. Um solche Angriffe zu erschweren, müssen geeignete Gegenmaßnahmen
angewendet werden. Diese Arbeit stellt eine solche Technik, bei der es sich um eine
reine Softwaregegenmaßnahme handelt, vor. Durch Rekompilierung von Binärcode zur
Laufzeit erreichen wir Polymorphie der unvermeidlichen Seitenkanalemissionen. Dieser
Ansatz ist üblicherweise auf kleinsten Controllern schwierig implementierbar, da er
ausgesprochen rechenzeitintensiv ist. Durch geschickte Vorausberechnung bestimmter
Teilaspekte erreichen wir dennoch hohe Laufzeitperformance und können so auch für
kleinste Mikrocontroller wirksame DPA-Gegenmaßnahmen anbieten.

Nicht nur variable Stromaufnahme, sondern auch winzige Unterschiede in der Lauf-
zeit selbst können von Angreifern mit einfachen Mitteln ausgenutzt werden. Da der
angenommene Angreifer physische Kontrolle über das Ziel besitzt, ist es ihm möglich,
taktzyklenakkurate Messungen des Controllers vorzunehmen. Code, der zur Laufzeit da-
tenabhängig um nur einen einzigen Taktzyklus variiert, kann bereits ein Informationsleck
bedeuten und zum völligen Verlust der Sicherheit führen. Durch die heutigen, immer
komplexer werdenden CPUs, ist eine händische Laufzeitanalyse nicht mehr vernünftig
möglich; wir stellen daher in unserem zweiten Beitrag einen zyklenakkuraten Cortex-M
Prozessorkern-Emulator vor, der solche Seitenkanalangriffe früh im Softwarelebenszy-
klus detektieren kann. Er kann benutzt werden, um sicherheitskritische Funktionen von
Firmware direkt nach jedem Kompiliervorgang auf datenabhängige Laufzeitunterschiede
zu testen und dem Entwickler frühzeitig Diagnoseinformationen zur Problembehebung
bereitzustellen.

Wie komplex moderne Mikrocontroller geworden sind, zeigen wir in unserem dritten Bei-
trag, der die Sicherheit eingebetteter Systeme aus einem anderen Blickwinkel betrachtet:
Wir zeigen, wie Peripherie, die mittlerweile als gängige Dreingabe auf Mikrocontrollern
präsent ist, missbraucht werden kann. Konkret geht es um Funktionalität, die dazu

3

Zusammenfassung

gedacht ist unerwünschte, parasitäre, elektromagnetische Emissionen zu unterdrücken.
Wir verwenden ebendiese Einheit jedoch nicht, um Emissionen zu unterdrücken, sondern
modulieren die Abstrahlung und erzeugen damit einen verdeckten Kanal. Dieser verfügt
zwar über eine relativ geringe Bandbreite, kann aber von einem Angreifer dazu verwendet
werden, kurze Nachrichten wie beispielsweise kryptografische Schlüssel zu übermitteln.

Ein gängiger Ratschlag, um eine Härtung gegen physische Angriffe zu erreichen, ist der
Einsatz von Hardwaresicherheitsmodulen (HSM). Diese bringen bereits in Hardware
implementierte Gegenmaßnahmen gegen gängige physische Angriffe mit. In der Literatur
wird leider häufig nicht behandelt, dass die von diesen HSMs angebotenen Schnittstellen
hochgradig proprietär sind. Insofern ist eine Integration in bereits bestehende, spezifizierte
Protokolle, oft schwierig bis unmöglich. Wie eine solche Integration doch gelingen kann,
zeigen wir in unserem vierten Beitrag. Hierbei integrieren wir verschiedene proprietäre
HSMs in den standardisierten Handshake des bekannten Transport Layer Security (TLS)
Protokolls. Dies erreichen wir ohne inkompatible Veränderungen an TLS selbst, sondern
durch geschicktes Nutzen bestimmter Freiheitsgrade, die von TLS angeboten werden.

Zuletzt betrachten wir externe Peripherie, welche oft an eingebettete Systeme angeschlos-
sen wird. Hierfür nehmen wir DRAM als Beispiel; bestimmte RAM-Generationen haben
durch die hohe Integrationsdichte das Problem, dass nicht alle Bitmuster zuverlässig
gespeichert werden können. Deshalb kommt beispielsweise bei Intel-Prozessoren innerhalb
des DDR3 Speichercontrollers ein so genannter Scrambler zum Einsatz, mit dem wir uns
in unserem fünften Beitrag beschäftigen. Dieser beaufschlagt alle Speichermuster mit
einem pseudozufälligen Datenstrom. Für forensische Zwecke ist daher das Speicherabbild,
das beispielsweise im Rahmen eines Kaltstartangriffs gewonnen werden kann, unbrauch-
bar. Wir zeigen wie das spezielle Verfahren von Intel funktioniert, wie ein so zerhacktes
Abbild wieder zu seinem Urbild konvertiert werden kann und was die Implikationen
solcher zusätzlicher, transparenter Technologie sein können.

4

Acknowledgment

That I arrived where I am now is largely due to my mentor and supervisor Prof. Felix
Freiling, who gave me the guidance and freedom to pursue fascinating topics. Navigating
through the shoals of science would have been impossible without the orientation you
provided. Thank you for your guidance, support, and patience over the last four years.

The person who, many years ago, sparked my interest in cryptography and security is
Prof. Falko Dressler. I had the luck to experience his passionate and inspiring way of
teaching as a college student. It fills me with great pride that, after all of this time, that
spark is still alive and well and ultimately lead to the creation of this work. Thank you
for igniting my passion for cryptography and agreeing to review my work.

In the process of writing this thesis I have met many brilliant people at the Department
of Computer Science 1 at FAU. Working together with Felix, Sebastian, Michael, and
Andreas on our papers has been both pleasant and productive — it made me appreciate
what effort goes into scientific writing. Many others at i1 have been involved with my
work in one way or the other, however. I would like to thank especially Andreas, Chris,
Johannes G., Johannes S., Lena, Michael, Mykola, Sven and Tilo for peer-reviewing
my thesis and giving me invaluable feedback on it. We had great times together not
only at work but also in private, and I consider myself lucky to have you as my friends.
Meeting such bright, open-minded, welcoming and curious people has broadened my
horizon tremendously and has been a truly humbling experience. Thank you all for a
great time at i1.

Writing this thesis paved the way for me to get incredible insights into the area of
computer science which I find most fascinating. This opportunity would never have been
possible without the support of my employer, Bosch Software Innovations, and Bosch
Smart Home. I especially thank Thomas Schmidt, who believed that I would be qualified
to become a security specialist at Robert Bosch and who therefore recommended me as a
Ph.D. candidate. It has been a fantastic and wonderful ride so far. I am proud, happy
and grateful to be able to do the things which I love — designing and evaluating security
systems — for a living.

Lastly, I would like to thank my wonderful wife Julia for her encouragement, patience,
and support over the years. Many close friends also played a significant role in getting
to this point; Severin, Andreas, Tobias, Alexander — you all know exactly about the
ecstatic ups and crushing downs that the life of a Ph.D. candidate brings with it. Thank
you for sharing your unique perspective with me and thank you for being the amazing
friends you are.

5

Chapter 1

Introduction

No different from all other disciplines of engineering, in the subject of IT security we
also need to make many reasonable compromises. In the design of systems, security is
never the only criterion, but we need to have an eye on other parameters such as cost,
performance, complexity and maintainability as well. The approach a security engineer
takes to build a secure system is no different from that of a building engineer who wants
to construct a stable structure. Both terms are relatively vague and depend on the exact
circumstances in which they appear.

How secure does a high-security system need to be? How structurally sound does a stable
structure need to be? It all depends on the context. While there certainly is consensus
for some unambiguous cases, most real-world systems are not easily pigeonholed. A
connection over which a bank wire transfer is conducted usually has higher security
requirements than a connection which serves a public weather report. The tricky part,
however, in this determination of requirements is quantifying the security level that is
appropriate to fulfill the demands of a particular application.

1.1 Security Quantification

The estimation of the security of algorithms like the Advanced Encryption Standard
(AES; National Institute of Standards and Technology 2001) or the Rivest, Shamir and
Adleman cryptosystem (RSA; Rivest, Shamir, and Adleman 1978) is done scientifically:
The measure which is used to indicate the level of security is bits of security. What
this means is that an algorithm that provides n bits of security is as secure as an ideal
block cipher with a key length of n bits. The only feasible attack against such a cipher
is an exhaustive search of the key space. Because it is ideal, there are no algorithmic
shortcuts to speed up the attack by definition. An attacker, therefore, needs on average
2n−1 attempts to guess the correct key.

An ideal 128-bit block cipher provides exactly 128 bits of security. The popular AES-128
algorithm comes rather close; given the currently most advanced available cryptanalysis
of Bogdanov, Khovratovich, and Rechberger (2011), its security level can be estimated to
be around 126 bits. For an asymmetric cryptosystem like RSA, the estimation is slightly
more complicated because the algorithms which are used to break the system — for
RSA, this means factorization of the public modulus n — are much more sophisticated
than simple brute force search over a linear key space. However, this has also been
extensively studied, and recommendations which factor in the specific difficulty given the

6

1 Introduction

best known algorithms have emerged. As an example, the National Institute of Standards
and Technology (NIST) recommends that an RSA modulus n of length 3072 bits would
yield the equivalent of about 128 bits of security (Barker 2016).

While this may sound like quantifying security is rather straightforward, this feeling is
deceptive. Cryptography in many cases is counter-intuitive, and it is hard to tell apart
secure from insecure cryptographic constructions. This difficulty becomes alarmingly
obvious when we do not simply look at perfect algorithmic black boxes but observe actual
instances of hardware which perform a particular cryptographic computation.

To put this into context, we explore a tangent and take a few steps back in time: About
eighty years ago, Alan Turing pioneered the field of computer science with the invention
of his Turing machine (Copeland 2010). His brilliant and groundbreaking invention, the
so-called Bombe computer, was used by the British to decode encrypted transmissions
of the Axis powers during World War II. For a device like this machine, the physical
side effects were palpable: Since the computer’s implementation is of electromechanical
nature, it was noisy when performing its decrypting computations. The emitted noises
naturally corresponded to specific elements of the individual calculation steps. So while a
Turing machine in its perfect mathematical form only performs its intended computation
on the given tape, the real-world instance had significant real-world side effects which
accompanied every part of the computational journey (ibid.).

Why would this digression be of any relevance to modern computing today? The
basic fact of the matter is: even our most sophisticated microcomputers today, built
solely on semiconductors and without any mechanical parts at all, are — essentially
— glorified Turing machines. Moreover, just as their mechanical ancestors, they also
exhibit similar side effects along every performed computation. While we do not typically
associate modern computers with acoustic noise emission, other types of externally
measurable parameters like consumed power, emitted electromagnetic interference or
time of computation are very likely to vary in dependence on the processed data.

These variances are certainly minuscule in magnitude and happen at extraordinarily
fast speeds of modern computers. While it, therefore, may seem unlikely that they
are exploitable, this is what the field of Side Channel Analysis (SCA) has shown to be
possible. Different emission patterns during execution of machine code are monitored
externally, and the eavesdropping attacker tries to infer secret values from these patterns.

Naturally, when investigation about these side channels began with the work of Kocher
(1996), the instruments used to eavesdrop on electronic circuitry were sophisticated, lead-
ing edge and expensive. The initial demonstration of feasibility happened in a controlled
laboratory setting. An oscilloscope was usually directly coupled to the target circuitry to
precisely measure timings or the current consumed by the microchip. Nevertheless, the
threat that real-world systems are attacked by SCA should not be underestimated.

Genkin, Pipman, and Tromer (2014) show impressively how far exploitation of side
channel leakage has come not even 20 years after the work of Kocher (1996). They
describe a remarkable new way of picking up side channel emission without having to rely

7

1 Introduction

on wire-bound current measurements. Instead, they exploit the fact that the potential
of the computer chassis relative to mains ground shows data dependent fluctuations
during a running computation. This insight can greatly influence the attack scenario:
An adversary who connects measurement equipment to a target PC immediately and
obviously raises suspicion. However, it is common for laptop owners to connect their PC
to external video displays such as a video projector during a presentation. The shield
of the video port is typically directly connected to chassis ground. If the adversary had
therefore prepared the projector beforehand, she could be able to attack private key
material that is handled by the victim computer during a cryptographic signing process.
While exploring this fascinating new side channel pickup, Genkin, Pipman, and Tromer
(2014) tried to find the limits at which key extraction would not be feasible anymore.
For this, they set up one experiment in which they used a human body as a pickup:
They measured the electric potential of a person who was touching the victim’s computer
with one hand. Quite surprisingly, modern SCA makes it possible to extract private key
material even in this harsh, noisy environment.
Finally, in light of the brief historical prelude about noisy Turing machines, the work
of Genkin, Shamir, and Tromer (2014) shows that indeed even on modern computers,
acoustic leakage can be sufficiently exploited to gain knowledge of secret keys handled
during certain cryptographic computations. The implementer of the cryptographic
software would need to take special precautions to avoid such treacherous acoustic
leakage. The stunning fact about this is that the audible range, with a maximum
frequency at maybe 25 kHz, is magnitudes below the frequencies at which computers
operate — typically in the Gigahertz range. It only seems reasonable to assume that
the leakage would therefore not be exploitable, but Genkin, Shamir, and Tromer (ibid.)
demonstrate that the opposite is true.
In a later work, Genkin, Pachmanov, Pipman, Tromer, and Yarom (2016) show that
such a low-bandwidth attack does not only affect the audible frequency spectrum but
that their results transfer equally well to low-sampling electromagnetic pickups. For
demonstration, they showcase wireless extraction of cryptographic material out of a
modern smartphone. Their sampling of the signal is done using a haphazard, self-wound
EM probe in combination with a commercial-off-the-shelf sound card.
What this illustrates is that even though it may be possible to estimate the level of
security of a basic building block, determining the degree of security of a practical instance
remains challenging. We need to scrutinize every operation intensely under the actual
hardware constraints to avoid generating unwanted data leakage.
On top of the difficulty of avoiding side channel leakage in the implementation of
cryptographic primitives comes the challenge to combine many such primitives into
cryptographic protocols. For the popular transport layer security (TLS) protocol, for
example, there are dozens of different layers involved: For instance, key exchange is
performed using asymmetric cryptography after which a derivation function turns the
result into a symmetric master secret. That derivation function, in turn, relies on
cryptographic hash functions. Signatures based on asymmetric cryptography are used

8

1 Introduction

to authenticate the exchanged keys, and the signed data needs to be pre-processed by
padding functions. Transmitted data is authenticated and encrypted. It is not surprising
that in such a complex real-world protocol, numerous flaws have been discovered over the
years (Adrian et al. 2015; Al Fardan and Paterson 2013; Aviram et al. 2016; Beurdouche
et al. 2015; Duong and Rizzo 2011; Möller, Duong, and Kotowicz 2014).
Many of these flaws exploit a combination of unfortunate cryptographic design decisions
in conjunction with advances in super scale computing. Both the Logjam attack of
Adrian et al. (2015), as well as the most recent DROWN attack of Aviram et al. (2016),
use the capabilities of current cloud service providers to compromise the security of TLS
in various scenarios. These attacks illustrate what kind of a moving target IT security
is. A security estimate that would today be considered reasonable might, a decade in
the future, become an actual problem when solving the underlying problem becomes
computationally feasible.
Many of these protocol weaknesses likely are attributable to accidental mistakes. Unfor-
tunately, in the world we live in today, it is far from clear whether powerful state-level
actors such as the NSA are trying to introduce such weaknesses deliberately. Koblitz
and Menezes (2015), two luminaries in the world of cryptography, provide an excellent
interpretation of the Edward Snowden revelations. They describe possibilities of how
malicious organizations could influence standardization of cryptographic protocols to
introduce deliberate weaknesses or back doors.
The task of a security engineer is therefore much more challenging than the sole math-
ematical analysis of the used cryptography. The effects of real world hardware, the
constitution of cryptographic compound protocols and the possibility of adversaries to
profoundly influence design decisions of such protocols are factors which complicate the
matter significantly.

1.2 Embedded Devices as a Target

We need to consider all factors mentioned above when trying to decide how secure a
system needs to be, what quantifiable measure of security is appropriate and against whom
we need to defend our system. The number of systems which perform communication
tasks is steadily rising because of ubiquitous computing which is emerging in the context
of the Internet of Things (IoT). While this term is often used as a buzzword — and,
to some extent, certainly is — the devices that belong to that category are currently
making their way into the consumer market.
New installed electricity meters are now almost exclusively so-called smart meters.
Concretely, this means these devices perform communication with a backend to transmit
their meter readings wirelessly. These readings need to be protected against modification,
which is why asymmetric cryptography is used to sign the measurements.
In the smart home market, formerly only of interest to the enthusiasts, we now see
devices which are inexpensive enough to attract the average consumer. These devices

9

1 Introduction

include switches, outlets and electronic locks, lighting applications as well as indoor and
outdoor cameras, smoke detectors and motion detectors. To be able to fulfill reasonable
use-cases, many of these devices are not only interconnected among each other, but also
perform communication with backend servers. This communication also needs to be
secured against eavesdropping and manipulation to avoid adversaries remotely doing
electronic lock picking.

Car insurance companies have begun to offer their customers lower rates if they in
exchange install black boxes in their vehicles. While this functionality is marketed as
a feature that rewards people with defensive driving habits, the insurance company
apparently also wants to determine if the insurant was — even partly — at fault as
soon as an accident happens. It is only sensible to assume that these black boxes act as
velocity and acceleration recorders which can pinpoint the speed of a car at the point
of impact. Naturally, these readings would need to be protected against unauthorized
modification on one side and encrypted against eavesdropping on the other side.

While all these examples are spread over multiple domains, what they all have in common
is their attacker model: All of these embedded systems are small computers which are in
permanent possession of the customer — who could potentially also be the adversary. In
the area of IT security, this results in the unusually strong attacker model. We try to
fend off an adversary in physical possession of the device who has an almost unlimited
amount of time to break it.

Having physical control over an embedded system is a tremendous advantage when trying
to break into a system. Trivial attacks include attaching a programming adapter to
the system and try to force the target into debugging mode. While such development
interfaces are usually locked in a production device, there still might be ways to glitch the
device into a state in which it enters the debugging mode even though it has officially been
disabled. An attacker could probe for such glitches by various means such as applying
under- or overvoltage to the chip for extremely short periods of time. Another approach
would be to put fast transients on the primary clock source to get the chip to trip up
during the instruction decoding phase. These are all possibilities only an attacker in
physical proximity of the device could exploit.

Passive physical attacks are not less dangerous, however. The side effects that microcon-
trollers naturally exhibit may lead to code inadvertently spilling its secrets through side
channels such as power emission or electromagnetic emission. An adversary can create
perfect laboratory conditions to minimize the effects of noise or jitter on the system
and can perform accurate measurements efficiently. Such attacks have become even
simpler since O’Flynn and Chen (2014) published the full details and source code of their
ChipWhisperer platform. It is a versatile, low-cost device that can perform sophisticated
attacks such as correlation power analysis (CPA) with daunting precision. We expect
therefore the amount of attacks on consumer-grade electronics to see a sharp rise in the
future because conducting attacks on such devices has become much less challenging.

10

1 Introduction

1.3 Contributions

For the manufacturer of equipment, fulfilling the requirement of using inexpensive
hardware but still get the required level of protection against such sophisticated attacks
is challenging. The measures which impose the lowest additional cost on a maybe already
developed embedded system is one that can be realized in software. This is why we studied
software-only countermeasures against power analysis, and we present our approach in
Chap. 2. It extracts entropy from chip-internal sources and uses that to recompile code in
a fashion that ultimately leads to the correct result, but under greatly varying emission
patterns.

Another point of interest to an attacker is passively monitoring the timing of functions.
As you can imagine, an attacker who has physical access to a device can use hardware like
oscilloscopes to perform measurements with great accuracy. Therefore, even the slightest
differences in timing that a system may exhibit can be exploited by an attacker. This
danger is something that many standard implementations today do not even consider
since they are optimized for performance and not for constant runtime. A typical example
for this is the memcmp routine, which compares two chunks of memory. It usually performs
a lazy abort as soon as the first difference in the two buffers under examination is
encountered. If this memcmp call is called by a function which compares given user input
to a fixed password, this optimization immediately becomes a security issue: the attacker
can then crack the checking function character by character just as a lock picker would
pick a lock pin by pin. For each position in the buffer, there is exactly one option that
deviates in runtime from the rest — and if only by a single clock cycle — that indicates
that the byte was correct, and the attacker can continue guessing the remaining bytes.

While it is generally not possible to automatically create code that performs a given
task in constant runtime, we wanted to give the user at least a hands-on tool to be
able to detect such possibly critical timing leaks. Since the ARM Cortex-M platform is
overwhelmingly popular, we chose to develop a Cortex-M core emulator with the single
objective of emulating the timing behavior as closely as possible down to clock cycle
accuracy. We present this emulator in Chap. 3. It allows a user to include simulation
runs in a build pipeline to detect problems early on. Such problems can appear, for
example, if a more recent compiler version detects a corner case in which it can apply a
particular optimization. With our approach, we can pinpoint such cases to enable the
developer to remedy the issue.

The modern microcontrollers which are on the market today have a vast amount of
peripherals on board. This feature-packing happens because it is often less costly for
the vendor to produce a standard core that all processors of the family have in common.
How this can enable new methods of attack for an attacker who can poison the firmware
or supply chain is something that we take a look at in Chap. 4. Concretely, we take the
offensive side and abuse facilities which are present on modern microcontrollers and which
are meant to reduce electromagnetic interference to cause electromagnetic interference
deliberately. The way in which we modulate these hardware peripherals allows us to

11

1 Introduction

transmit information. An astounding fact about this is that an adversary may create
a covert channel that can be detected in the radio frequency domain — even when the
compromised system was never intended to perform any RF communication in the first
place. This could give an attacker the possibility of planting back doors or bugs in
systems which would otherwise be inaccessible to her.

Since there is market demand for it, not only have general-purpose microcontrollers gained
popularity, but specialized security controllers have also become more popular. Such
controllers usually bring hardware countermeasures that general purpose microcontrollers
do not have. As such, they can be regarded to provide a higher level of security. The
problem with integration of such specialized controllers, however, is that they dictate the
exact fashion in which a specific cryptographic computation is performed and usually
leave little flexibility. For the system designer, this creates a dilemma if the protocol
which she wants to implement also dictates a specific API. To create a functional system,
high-security companion chips are often discarded because they are deemed incompatible
with the pre-existing API definition. This is something we hint to in Chap. 5. However, we
show a solution for integration of such proprietary high-security modules into pre-existing
protocols. To demonstrate that our approach is feasible, we integrate various hardware
security modules into the standard handshake of the TLS protocol without having to
alter the structure of TLS itself.

In more sophisticated controller systems, it is not possible to integrate all peripherals
on a single System-on-Chip (SoC). Instead, it is common to have a small amount of
static RAM on the controller, but have external, dynamic RAM, on separate ICs of the
embedded system. DRAM, however, is not without its caveats, as we show in Chap. 6.
Concretely, we analyze DDR3 DRAM that is widely used in the personal computer
domain today and examine how Intel’s memory controllers access this DRAM. Since the
bit density in modern DRAM chips is extremely high, the chance of disturbance errors
due to current fluctuations grows. Intel compensates for this by applying pseudorandom
scrambling in the data stream that is transmitted between the memory controller and
DRAM chip itself. The impact of our work has two aspects: On one side, we reiterate
that simple scrambling — although it was a major obstacle for forensic image acquisition
— is not sufficient for cryptographic purposes. More importantly, however, we demonstrate
the danger of using hardware which might only then perform its intended function reliably
when the underlying hardware constraints are not exploited.

Chapters 3 (Bauer and Freiling 2016), 4 (Bauer et al. 2016a), 5 (Bauer and Freiling
2015) and 6 (Bauer, Gruhn, and Freiling 2016) are all based on previously published,
peer-reviewed work. In all four of these publications, the main contributions and majority
of the writing were carried out by Johannes Bauer (clarification in accordance with
FPromO Tech, § 10 Abs. 3 Satz 2).

12

1 Introduction

1.4 Outlook

What we want to achieve with our work is twofold: On one hand, we illustrate how
susceptible modern general-purpose microcontrollers are to attacks which have come
within the reach of even laymen. While power analysis was something that only a few
experts could perform, after the openness with which researchers like O’Flynn and Chen
(2014, 2015) approached the topic, many of these attacks can now be conducted by
literally pointing and clicking. Similar reasoning applies to hardware glitching or timing
analysis, which both have become impressively effortless with modern low-cost attack
hardware.

The other goal we are trying to reach is to broaden the spectrum of possible counter-
measures to these attacks on the low-cost side of the market. While some argue that
dedicated hardware can and should be used to protect secrets, we disagree: Especially
in the IoT context, many devices store secrets that are particularly relevant for privacy
reasons. The temptation of competing vendors to simply omit security features because
they are deemed too costly is very real. In the sense of scaling, software countermeasures
are inexpensive because once they have been incorporated in code, no additional fee
comes with each sold unit. Unfortunately, many companies do not consider the privacy
of their customers especially valuable and therefore try to avoid paying an extra price per
unit for improved security. In our opinion, it is better to offer these people inexpensive
software alternatives; while these certainly do provide a level of security that is less
than that of dedicated hardware, they may be the right fit for a particular application
nevertheless.

We believe that our work gives interesting insights and ideas which help make embedded
systems of the low-cost market more resilient against capable adversaries even in the face
of the challenging physical attacker model.

13

Chapter 2

Power Analysis

Power analysis (PA) has, after around 20 years of research, arrived at a point where
it can be conducted not only by experts with intricate knowledge of the subject but
also by laymen who know how to operate the available tools properly. This transition
severely impacts systems in which typically no countermeasures were applied in the past.
Due to the cost-sensitivity of these applications, however, hardware countermeasures are
often not a viable option. We present a software-only power analysis countermeasure
which achieves Boolean masking by using efficient binary recompilation. The necessary
entropy is extracted from MCU-internal processes with no need for a hardware RNG.
We implement and evaluate it on the popular ARM Cortex-M0/3/4 architectures, using
its specifics like the built-in barrel shifter of the M3/M4 to our advantage. The result is
an overall performance penalty factor of 2.2 which reduces the overhead considerably
compared to other software-only solutions of which we are aware. Our approach shows
that even the smallest Cortex-M series can be hardened effectively against non-invasive
physical attacks.

2.1 Introduction

The most basic building block that made the modern computer possible is the transistor.
In modern processors, transistors are interconnected to form functional logic units, the
gates, which itself are interconnected to form core processor components such as the
arithmetic-logic unit. Millions of transistors are used in modern processors, and the
component density on these devices is extremely high. The third generation Intel Core
processors have around 1.4 billion transistors in a chip area of about 160mm2 (Intel Inc.
2012b). Effectively, this means on average there are almost 9 million transistors per
square millimeter of space. These transistors are optimized to produce only a minuscule
amount of power dissipation so that such high component density is supportable. In
modern devices, this has been achieved remarkably well. Only active components — the
ones that may not be idle at a given point in time — on a chip dissipate power, and
static losses are reduced to a point where they are virtually negligible.

There are two aspects of looking at computations performed by machines: The first
is the algorithmic, mathematical, algebraic representation. Machines viewed like this
appear to be perfect black boxes with well-defined inputs and outputs. They perform
their duty and only that. When it comes to the real implementation of such a machine,
however, the parasitic effects of heavily optimized hardware start to become noticeable:
in practice, the machine exhibits side effects such as power fluctuation, noise emission,

14

2 Power Analysis

electromagnetic emission or variable execution time — usually with dependencies on the
calculated data. When these side effects cause data leakage to the outside, we refer to
them as side channels. Cryptographic algorithms have become secure from an algorithmic
standpoint; 16 years after its inception, the best known attack against the block cipher
AES, presented by Bogdanov, Khovratovich, and Rechberger (2011), only manages to
reduce its security by a factor of four. To attack such secure algorithms, side channel
analysis, therefore, is often the only viable option. Attackers shift their attention from
attacks on the theoretical implementation to attacks on practical instances of such basic
building blocks. In unison with the advent of cryptographically secure algorithms, the
relevance, and importance of side channels have equally risen as well.
Microcontrollers with impressive computational capabilities have become readily available
in the last few years. The popular 32-bit ARM Cortex-M architecture, for example,
offers a value line, the Cortex-M0, which is aggressively marketed by one semiconductor
manufacturer with the tagline “32 bits for 32 cents” (STMicroelectronics N.V. 2015b).
In this segment, these devices offer 32-bit performance while competing with 8-bit
microcontrollers price-wise. It goes without saying that these devices are more than
capable to run state-of-the-art cryptographic algorithms like AES-128 or SHA-256.
If, however, side channels are present in the implementation of this cryptographic building
blocks, side channel attacks (SCA) can be used to infer secret bits. One possible instance
of SCA is differential power analysis (DPA) which exploits the fact that computational
hardware exhibits parasitic, data-dependent power emission. When Kocher (1996)
pioneered the field of SCA, conducting these attacks was only feasible for attackers with
exceptionally sophisticated cross-domain knowledge.
Today, however, the open-source ChipWhisperer platform created by O’Flynn and Chen
(2014) is readily available and makes for an affordable, low-noise data acquisition system.
Open-source software is included which can perform advanced attacks (O’Flynn and Chen
2015) on the captured data even by non-experts. All hardware design documents such as
schematics have been published by them, making custom adaptations and modifications
of the hardware easily possible. It can be reasonably expected that such a groundbreaking
change leads to an avalanche effect in the attacks we see in the upcoming years. We
believe that the full potential of SCA, therefore, is not focused only on expensive hardware
but also on low-cost systems which contain secrets of lesser value.
To protect against SCA, both masking and hiding are common countermeasures. Masking
refers to the distortion of intermediate values to obfuscate the device emission character-
istic while hiding describes an obfuscation of the control flow of the computed algorithm.
Both operations can be realized in either hardware or software. If cost is no issue,
hardware solutions are usually preferable, because they can give a higher security margin
than software-only masking or hiding techniques. For the low-cost market, however,
software-only solutions are often preferred because they only negatively impact runtime
performance and code size. In this chapter, we focus on the Cortex-M series and explore
the possibilities of concrete software-only DPA countermeasures.
The idea of our approach is to use runtime binary recompilation to randomize invariants

15

2 Power Analysis

of executed instructions. By abstracting away from the actual assembly code and viewing
it as a pure bitstream, we make the runtime recompiler instruction-agnostic. This allows
for efficient and effective trace randomization. Our trick is to precalculate most operations
beforehand during compile time and generate a highly simple bytecode stream which
performs the binary code transformations. This bytecode stream is then interpreted at
runtime by a minimalistic virtual machine (VM) before every call to the cryptographic
routine.

2.1.1 Related Work

When side channel analysis first aimed to break implementations of cryptographic
algorithms, the focus was on high-level timing analysis. Kocher (1995, 1996) analyzed
the implementation of the modular exponentiation operation which is at the heart of
any Diffie-Hellman or RSA computation (Diffie and Hellman 1976; Rivest, Shamir, and
Adleman 1983). He measured differences the computation time the system took with
specially crafted input data and was able to recover the full private keys from those
measurements. Previous to the work of Kocher (1996) it was widely believed that
potential leakage would be insufficient for practical attacks.
With his seminal work, Kocher (ibid.) therefore basically founded the field of modern
side-channel analysis. Kocher, Jaffe, and Jun (1999) later extended their attacks to
include differential power analysis (DPA). They demonstrate their approach to be feasible
by successfully attacking concrete implementations of RSA and DES. The attacks they
describe are versatile and apply to nearly all computational equipment which exhibits
parasitic, data-dependent side effects.
Shortly after, Coron (1999) published multiple algorithmic blinding countermeasures
that aimed at protecting against DPA. Clavier, Coron, and Dabbous (2000) published a
statistical approach to overcome insertion of the random dummy instructions within a
cryptographic computation. This defensive countermeasure is known as Random Process
Interrupts. They acknowledge that such countermeasures increase the difficulty of an
attack considerably, but not to the point of computational infeasibility.
While many published DPA attacks initially used direct measurements of consumed
device current, Gandolfi, Mourtel, and Olivier (2001) looked into the feasibility of key
recovery by analyzing the electromagnetic emission of a device. They published attacks
using simple electromagnetic analysis (SEPA) and differential electromagnetic analysis
(DEPA) — the equivalent of SPA and DPA in the electromagnetic domain. The same year
Quisquater and Samyde (2001) also published their work on electromagnetic (EM) side
channels; included in their work are also directions on countermeasures that can be used
to defend against DEPA. Even though EM-analysis is in some ways more challenging
for an attacker to perform, Agrawal et al. (2003) showed that a successful EM analysis
attack could be used in certain cases where a DPA attack would be insufficient.
When designing new block ciphers, one important aspect that needs consideration is
the general susceptibility of the algorithm to side channel attacks. During the AES

16

2 Power Analysis

competition, Daemen and Rijmen (1999) made an analysis of the proposed candidates
and in their analysis distinguished between arithmetic and Boolean operations that are
used within ciphers. It is their conclusion that arithmetic operations, in general, are
harder to defend against power analysis attacks compared to their Boolean counterparts.

Coron and Goubin (2000) elaborate on the difficulty of effective arithmetic and Boolean
masking approaches, in particular, a generalized scheme described by Messerges (2001)
to protect AES finalists against SCA. Both papers are helpful in understanding potential
SCA countermeasures and how they can fail in practice.

Tillich and Großschädl (2007) present well-designed hardware countermeasures by extend-
ing the instruction set of a SPARC LEON2 by instructions which are used for masking.
Since a sole hardware solution is expensive regarding the number of used gates, they
combine their modification with software countermeasures to significantly reduce the
complexity of the device.

A comprehensive reference on how power analysis can be practically conducted is given
by Mangard, E. Oswald, and Popp (2007). They describe the theoretical background
behind power analysis and also highlight countermeasures that can be used to defend
systems.

Eisenbarth et al. (2008) show a real-world application of DPA in which they broke the
keyless entry system KeeLoq. It is widespread in the automotive market and utilizes
a rolling code which a nonlinear feedback shift register generates. In their work, they
developed a specialized hardware attack that required only 30 power traces of the device
under test to break the key.

D. Oswald and Paar (2011) performed a successful DPA attack on Mifare DESFire
MF3ICD40. DESFire is a popular, contactless smart card with dedicated hardware
countermeasures. The effort to break it was quite significant and a lot of data (about
250000 traces) was required to perform key recovery, but they were ultimately successful,
underlining how difficult it is to thwart DPA attacks even by sophisticated hardware
countermeasures.

Recently, literature also considers sole software countermeasures such as the one we
present here. For example, Agosta, Barenghi, and Pelosi (2012) describe an approach
that generates semantically equivalent versions of code with different power emanation
characteristic to counteract power analysis. They recompile emission-critical code into
many semantically equivalent variations called tiles and randomly replace these tiles
during runtime. This replacement is known as a morphing action and has a performance
penalty of 90 ms. It is therefore not computationally feasible to morph the code at every
call to the encryption routine, so Agosta, Barenghi, and Pelosi (ibid.) only morph their
code after 3000 encryption operations, leading to a performance impact factor of 1.20.

Later, Agosta, Barenghi, Pelosi, and Scandale (2015) refined their approach by choosing
a precompiled alternative fragment randomly during runtime, rendering it unnecessary
to have a writable code segment. The performance impact at runtime for AES-128
encryption with their approach is a factor of about 6.75.

17

2 Power Analysis

Bayrak et al. (2015) presented an approach for automatic software-only masking coun-
termeasures. It is based on a compiler architecture which detects leaking instructions
and masks them to achieve a compromise between the desired security level and runtime
performance penalty. While their approach focuses on creating a high-performance stati-
cally masked block cipher, we are not aware of any work that uses dynamic, randomized
runtime recompilation to achieve the same goal.

Boolean masking is difficult to implement correctly using masking tables, as Tunstall,
Whitnall, and E. Oswald (2014) demonstrate. In their work, the authors attack the table
generation directly, nullifying their effect during an attack. Such a break of a potential
DPA countermeasure underlines the need for a plentiful source of good entropy when
attempting to mask power emission. Van Herrewege, van der Leest, et al. (2013) describe
means of collecting entropy on devices which do not contain a hardware random number
generator. Van Herrewege and Verbauwhede (2014) use the content of uninitialized
microcontroller SRAM as seeding entropy to a Keccak-based PRNG. Both works consider
the Cortex-M platform.

2.1.2 Contributions

In this chapter, we present a masking technique that uses efficient runtime binary
recompilation to randomize invariants of some instruction sequences and randomly
schedule the time of their execution. We leverage the offered capabilities of the specific
architecture to create efficient, easily recompilable masking countermeasures. One
example of such capabilities is the versatile barrel shifter of the Cortex-M3 and M4
variants. Similar to Agosta, Barenghi, and Pelosi (2012), our idea is to pre-calculate
which parts of masking transformation opcodes can be randomized and have a minimalistic
VM execute these reobfuscations during runtime. More concretely, the contributions we
make in this chapter are as follows:

• We present a method of performing runtime binary recompilation which is extremely
efficient by doing many time-consuming calculations beforehand at compile time. For
an AES-128 encryption operation, our protected variant takes about 2.2 times as long
as its unprotected counterpart. This is a substantial improvement to the currently
best software-only result we are aware of (factor 6.75 by Agosta, Barenghi, Pelosi,
and Scandale (2015)). Note that in contrast to Agosta, Barenghi, and Pelosi (2012),
who recommend morphing code every 2000 to 3000 encryption calls and achieve a
performance impact factor of 1.2; we recompile our code with every single invocation
of the encryption operation.

• We utilize specific hardware properties present on the Cortex-M architecture for
implementation of Boolean masking transformations. Chip-specific features, namely
the internal phase locked loop (PLL) locking times, are used as an entropy source.
It can produce 268 bits of unbiased entropy per second, enough to efficiently seed
our cryptographically secure pseudo-random number generator (CSPRNG). We

18

2 Power Analysis

demonstrate that our combined measures yield an effective differential power analysis
countermeasure.

2.1.3 Outline

This chapter is structured as follows: In Sect. 2.2 we give the background which is necessary
to understand why real-world hardware exhibits data-dependent power emission and
how power analysis can exploit this effect. We also highlight some aspects the Cortex-M
processor family which we use to strengthen our proposed countermeasures further.
Afterward, in Sect. 2.3, we show some concrete instructions or instruction groups which
we target within our countermeasures. How we efficiently implement randomization of
these instructions at runtime to achieve different emission characteristics is something
we show in Sect. 2.4. We finally evaluate our method experimentally in Sect. 2.5 and
give concluding remarks in Sect. 2.6.

2.2 Background

To understand the prerequisite that enables power analysis in the first place, we need to
take a look at the basic building blocks of modern semiconductors in Sect. 2.2.1. How
power analysis makes it possible to infer secret data from power fluctuation measurements
is then highlighted in Sect. 2.2.2. Afterward, we show in what ways the Cortex-M family
is unique in Sect. 2.2.3 and what possibilities this opens up to use the architecture to
our advantage in the implementation of effective PA countermeasures. Then we go into
detail about the countermeasures in Sect. 2.3. How we implemented this efficiently on
real hardware is something we describe in-depth in Sect. 2.4. To demonstrate that our
approach is effective, we give an experimental evaluation in Sect. 2.5 and finally conclude
in Sect. 2.6.

2.2.1 Transistors and Switching Loss

In the 1960s manufacturing of field effect transistors (FETs) has become possible on an
industrial scale. Since then, they have replaced their bipolar counterparts in almost all
semiconductors manufactured today. FETs are electronic devices with three terminals: a
gate, source, and a drain connection. A base material, called the substrate, is used as a
basis for their fabrication. This monocrystalline substrate is doped, which means that
deliberate impurities are introduced into the substrate to achieve the desired behavior
of the semiconductor. Doping is performed to make regions of the substrate either be
depleted of electrons (i.e., contain holes, known as p-type doping) or to have an excess of
electrons (i.e., contain carriers, also known as n-type doping). The physical construction
of a transistor is shown in Fig. 2.1. Within the substrate, two islands are cut in which
doped material is inserted with a doping type opposite to that of the substrate. These

19

2 Power Analysis

Source Gate Drain

n+ n+

p+

Substrate

p-doped
n-doped
Isolation

Metallization

Figure 2.1: N-channel metal-oxide semiconductor field effect transistor

islands form the source and drain. An isolation layer is manufactured on top of both of
these two doped islands, and a connection is made on top of this isolation layer. It forms
the gate. The exact physical process of how this isolation layer is formed differs across
types of FETs. We show the manufacturing process of a MOSFET where an explicit
physical isolation layer is used, which usually consists of SiO2. The transistors which
are used in CPUs are constructed differently, but the general principle and resulting
consequences stay the same.
As the name suggests and as Shockley (1952) also describe, the mode of operation of
FETs utilizes field effects within the transistor. If the substrate is of p-type and source
and drain are of n-type the device is called an N-channel field effect transistor. Fig. 2.1
shows such an N-channel MOSFET. Characteristic for the N-channel FET is that it
becomes conductive across its drain-source region when the potential applied to the gate
is positive compared to the potential of the source. Inversely, if the substrate is of n-type
and source and drain are of a p-type doped material, the device is called a P-channel FET
and exhibits the opposite effect. It becomes conductive across its drain-source region
when the potential applied to its gate is negative compared to the potential applied to
its source.
When a FET is conductive, it is also — analogously to a switch — referred to as being
turned on while it otherwise is turned off. The associated source-drain resistance for the
on and off states are called RDSon and RDSoff . For an ordinary MOSFET such as the
popular 2N7002 typical values are RDSon = 2.8Ω and RDSoff = 4.8GΩ — a dynamic range
of more than nine orders of magnitude (NXP Semiconductors N.V. 2011).
In complex digital semiconductors such as integrated circuits, FETs are mainly used in a so-
called complementary metal-oxide semiconductor (CMOS) configuration. Complementary
means that every digital output stage is composed of two complementary MOS transistors,
one N-channel and one P-channel FET. The gates of both transistors are connected
to form the input terminal of the driver stage. Since the switching characteristic of an
N-channel and P-channel FET is complementary, this means that exactly one of the
two transistors is active in a steady-state with valid digital input voltages applied to
the common gate. Valid in this context means that the voltage is outside the so-called
forbidden region, i.e., the voltage level is either lower than a certain threshold VIL if the

20

2 Power Analysis

T1

OUTIN

Vdd

T2

Figure 2.2: Idealized inverting CMOS output stage

T1

OUTIN

Vdd

T2

C3

C1

C4

C2

Figure 2.3: CMOS output stage with CGS and CGD modeled

input is a digital Low or higher than a certain threshold VIH if the input is a digital
High .

Modern integrated circuits use different variants of the CMOS technology, but still have
the common property that their output stages use a push-pull transistor configuration.
The push-pull construction is used to allow fast switching because active drivers cause
every change of the output. Consequently, an output stage can both actively source or
sink current if either the P-channel or N-channel FET is turned on. Such an output stage
driver can be seen in Fig. 2.2. It has the side effect of inverting the input signal because
an active N-channel FET (logical High input) switches the output against GND and
an active P-channel FET (logical Low input) switches the output against the positive
supply voltage, VDD.

In an idealized device, switching is instantaneous and lossless, i.e., without any power
dissipation. Real-world devices, however, exhibit parasitic effects which do cause switching
losses. One contributing factor is the parasitic capacitance which forms between the

21

2 Power Analysis

transistor terminals. Fig. 2.3 shows a more accurate model which explicitly models the
gate-source capacitances CGS (C1 and C2) and the gate-drain capacitances CGD (C3
and C4). While these capacitances do not contribute to energy consumption in a static
(non-switching) case, they do cause a current surge when the input signal switches and
the capacitances are charged or discharged. Since the energy WC stored in a capacitor is

WC = 1
2CV

2

Where C is the capacitance and V is the voltage that the capacitor is charged up to, this
means that the associated switching loss Wl is

Wl = 2fWC = fCV 2

Another contributing factor to the buffer input capacitance is the Miller effect. It was
first described by J. M. Miller (1919) and describes the effect that inverting amplifier
stages see a perceived increase in input capacitance dependent on the amplifier gain.
While the original discovery was revolving about input capacitances of amplifiers built
with vacuum tubes, the same principle still applies to modern semiconductors.

In addition to the energy dissipated through the periodic charging and discharging of
parasitic FET capacitances, the FETs itself traverse their linear region when switching
from the off to the on state or vice versa. This means that during the transition both
transistors are conductive to a certain extent. Therefore, a current path forms the positive
supply voltage over both drain-source paths RDS to ground.

2.2.2 Power Analysis

As explained in the previous section, the static power consumption of a complementary
transistor pair is comparatively small, but switching causes a surge in power consumption.
Within integrated circuits, complementary transistor pairs are assembled to form logic
gates. Using gates it is possible to build memory cells such as the most basic latch: the
RS flip-flop circuit. Such memory cells are used in computers to hold a particular state.
One example of this is the accumulator of a processor, which is fundamentally just an
array of memory cells.

Breaking such a hardware register down into its constituent components, the implications
regarding power consumption become evident: Flipping a bit in a register means that
some constituting gates change their output value. Intuitively, the magnitude of the
current spike associated with such a data change within latches corresponds to the amount
of bits flipped by the operation. This immediately leads to the prerequisite that makes
differential power analysis possible: there exists an externally measurable parameter (i.e.,
the power consumption of the whole device) which correlates with the data that the CPU
computes.

22

2 Power Analysis

Consider, for example, the implementation of a symmetric encryption algorithm such as
AES which we view as a black box. The algorithm itself is public knowledge, but the key
which parameterizes algorithm is unknown to the attacker. However, the attacker has
access to a hardware implementation which performs the computation. With this given
hardware, she can encrypt arbitrarily chosen plaintexts while simultaneously measuring
the power consumption during this computation. The first thing the attacker would do is
record a number of such traces with randomized inputs. She then records the input and
output values of the cryptographic computation and stores them along with recorded
current consumption over time, called the power trace.
In a second step, the algorithm is analyzed. In particular, the attacker chooses a target
operation which handles intermediate values of the cryptographic computation. This
secret intermediate value needs to have a certain correspondence to parts of the secret
key. The attacker then makes a random guess about this intermediate value. Under
the assumption that her hypothesis is correct, she estimates for each of the previously
computed ciphertexts the amount of leakage that this certain operation (such as an
XOR of an S-box output value used within the algorithm) would have created. Then
she groups the previously captured traces accordingly, for example into one group where
little power fluctuation can be expected and into a second group in which a significant
surge would appear if her guess was correct.
With randomly chosen plaintexts and a reasonable cryptographic algorithm, each group
roughly contains the same amount of power traces. Both groups are then averaged, and
the differential trace between the two averaged groups is calculated.
There are two possible outcomes: Either the guessed intermediate value is right, or it
is wrong. If it is wrong, then the calculated estimates for the power consumption are
likewise equally incorrect. The grouping, therefore, is wrong in roughly half of the cases.
Therefore, both groups have an identical statistical constitution, and thus the differential
trace only contains noise but is otherwise flat.
If, however, the attacker’s intermediate value hypothesis was correct, then the estimation
of flipped bits and consequently of dissipated power also is correct. The grouping is also
correct, and one group contains a lot of traces with large power dissipation while the
other group contains many traces with comparatively small dissipation. The differential
trace, therefore, exhibits a sharp spike at the point in time where the attacked operation
occurs. This peak reveals to the adversary that her hypothesis was correct, and she,
therefore, learned part of the hidden key.
Using this revealed information, the attacker would now proceed to make another guess
about a different part of the algorithm — this time integrating the knowledge gained
from the first attack into her model. She again groups traces and repeats the process
until she has learned the whole key. Similar to lock picking, with this approach, the
adversary also leverages the fact that she can break the lock pin-by-pin — or, in our
electronic case, break the algorithm byte-by-byte. That is the basic idea behind power
analysis, and while more sophisticated statistical methods have since superseded this
simple approach, the underlying principle remains the same.

23

2 Power Analysis

Rotate 0

Rotate 1

Rotate 2

Rotate 3

In3 In2 In0

Out0

Out1

Out2

Out3

In1

Figure 2.4: Simplified view of a 4 bit barrel shifter construction made from 16 tri-state
buffers.

While modeling the hardware behavior might seem to be difficult, it is surprising that
even simple emission models are surprisingly effective. One example is the described
Hamming difference model, e.g., described by Brier, Clavier, and Olivier (2004), which
predicts a proportional change in power consumption in dependence on the number of
flipped bits. Depending on the sophistication of the implemented algorithm and the
measuring equipment, successful attacks can be performed with as little as one single
trace (Schuhmacher 2014) for simple targets. For targets which are heavily protected by
countermeasures, however, a successful attack might require traces that range well into
the hundred thousand, e.g., as shown by D. Oswald and Paar (2011).

2.2.3 Cortex-M Barrel Shifter

A barrel shifter is a programmable digital circuit which can shift or rotate data words in
constant time. This means its use for defense against DPA does not create additional
security issues such as timing side channels. For a given word width n it consists of an
n× n matrix of tri-state buffers. Such a buffer matrix is shown in Fig. 2.4. It shows how
the barrel shifter would be configured to perform a rotation of 0 . . . 3 bits by enabling
exactly one of the four inputs on the left side. In practice, this circuit is slightly more
complicated because it can also accommodate for bitwise or arithmetic shifts.
An integral part of the Cortex-M3 and Cortex-M4 architectures is the MCU-internal
barrel shifter (ARM Ltd. 2014). Using this barrel shifter is — different from most other
assembly dialects — not done via special assembly instructions. Instead, it attaches to
several instructions if the encoding is chosen in the so-called 32-bit wide form. To make
this a bit clearer, consider a 24-bit binary shift left in Intel64 assembly (Intel Inc. 2012a).
It is achieved by calling the shl opcode, as shown in List. 2.1.
In contrast, on the Cortex-M3 or M4 architecture one could use a mov opcode and
specify through the mnemonic’s encoding that the barrel shifter should simultaneously

24

2 Power Analysis

; rax <<= 24
shl $24, %rax

Listing 2.1: Intel64 representation of a 24 bit shift.

; r0 = r0 << 24
mov r0, r0, lsl #24

Listing 2.2: Thumb-2 representation of a 24 bit shift.

be engaged, as shown in List. 2.2. This connectable barrel shifter is available for many
instructions and gives the developer a powerful tool; it is something that we are using to
our advantage for masking computational intermediates on the Cortex-M3/M4 variants.

2.3 Code Polymorphism as a DPA Countermeasure

Our DPA protection scheme is based on randomizing the computation immediates and
certain instruction order at runtime through dynamic re-compilation of the protected
binary. In this section, we go over some examples of what instructions are relevant for this
type of polymorphic code transformation. Some explained measures make explicit use of
the Cortex-M3/M4 barrel shifter. Note that our enumeration of methods is incomplete;
we also use other techniques such as random pre-charging and dummy instructions in
our code. Since these have been thoroughly studied and are well-known in literature,
for example in the work of Coron and Goubin (2000), we do not repeat them here and
instead omit them for brevity.

2.3.1 Displaced Loading

A typical point of vantage which an attacker uses to create an accurate model for a
power analysis attack includes assumptions about the implementation under attack. This
information, therefore, should be considered public knowledge. An example of this is
that an attacker who knows that she is attacking a table-based AES implementation
can assume there is an S-box lookup at some point during the computation. With this
lookup and the following computations, a data-dependent power emission characteristic
can be accurately modeled.

Looking at a typical table-based AES implementation without any PA countermeasures,
we experimentally verified our assumption about the origin of loads. For this, we look
at the public domain AES implementation of Paulo Barreto. We just focus on AES
encryption in the following, but all observations apply to decryption analogously. The

25

2 Power Analysis

example code, which we compiled for the Cortex-M4 with gcc 5.2.0, emitted 60 load
instructions. Of those, 38 (63%) were within the calculation-intensive inner loops of
the algorithm, the remaining 22 (37%) were constant address initializations typically
generated at function entry. The inner loop loads are the ones which are of relevance to
power emission. Of those, roughly 50% were lookups of the S-box table while the other
50% were lookups of the inner state. Of these 38 most interesting load instructions, 34
(89%) were register indirect loads with displacement.

To mask power emission of loading, any load can be replaced by an arbitrary number
of load instructions if the code ultimately performs the correct action. When there is
a scratch register available, it is possible to replace one load operation by many load
operations which have the same base address, but randomized displacements. These
dummy instructions can then be placed alongside and around the target instruction
because their actions only affect the scratch register.

; r4 = r4[14]
ldrb r3, [r4, #14]

Listing 2.3: Load of a single byte.

; r3 = r4[n]
ldrb r3, [r4, #n]

; r4 = r4[14]
ldrb r3, [r4, #14]

; r2 = r4[m]
ldrb r2, [r4, #m]

Listing 2.4: Load of three bytes.

Such an example is shown in List. 2.3 and List. 2.4. The left version shows the original
variant. On the right, the code that has been post-processed is shown, There, the first
ldrb instruction loads one byte relative to r4 with a randomized offset n. The destination
is the register r3. This is semantically correct because the next ldrb operation — the
one that performs the actual load — overwrites r3 with the right result. The third load
is again a dummy with randomized displacement m into the spill register r2. There are
many degrees of freedom when reorganizing load instructions which all lead to different
runtime characteristics.

Note that for the code which we show in List. 2.4, the first and last ldrb instruction are
not actual valid assembly opcodes — they merely demonstrate that the variables n and
m are invariant for the correct execution of the code snippet. In reality, there would be
hardcoded offsets in these locations replacing n and m. During binary recompilation, we
change these hardcoded immediates. We also change the order in which these instructions
execute.

26

2 Power Analysis

2.3.2 Exclusive OR Instruction

Bitwise instructions are common in code which performs cryptographic computations.
Therefore, in such code, they are also responsible for a significant amount of side channel
leakage and should be given attention when trying to minimize that leakage. Among
the bitwise instructions, eor the most prominent; it is the Cortex-M mnemonic for the
exclusive or (XOR) operation.

Since our aim is to obscure power emanation of bitwise instructions we can, on Cortex-M3
and M4 devices, utilize the barrel shifter to our advantage. We first cause bit flips by
rotation of the source register, then perform the bitwise operation with an identically
rotated operand and finally rotate the bits back to their original location. Exemplary,
code for an XOR operation of two registers is shown in List. 2.5 and its obfuscated
counterpart code is presented in List. 2.6. The penalty of this operation is a tripling
of both code size (4 bytes in the plain version, 12 bytes in the obfuscated version) and
execution speed. Variants of this code could split up the single register rotation (i.e., the
first and last instructions) into multiple rotations which add up to the desired amount of
rotated bits at the penalty of more and slower code.

Superficially, the whole ordeal does not look like it is doing anything significant except
performing the XOR operation on a rotated word. However, the effect becomes apparent
when one looks at the modeled power emission of the combined code snippet on a
Hamming difference model in dependence of the input operands. In the simple XOR
operation, the power emission is proportional to the Hamming weight of the second
operand only. In its obfuscated replacement, the sum of leakage depends on both
operands.

; r0 = r0 ^ r1
eor r0, r0, r1

Listing 2.5: Plain XOR

; r0 = ror(r0, 16)
mov r0, r0, ror #16

; r0 = r0 ^ ror(r1, 16)
eor r0, r0, r1, ror #16

; r0 = ror(r0, 16)
mov r0, r0, ror #16

Listing 2.6: Obfuscated XOR

This effect is shown graphically in Fig. 2.5 through Fig. 2.10. All images show operations
of a 9-bit value XOR another 9-bit value, i.e., 512 by 512 pixels. The x axis in both cases
stands for values for one operand while the y axis shows all values the second operand
may take. The point (0, 0) is at the lower left corner for all figures, and the color indicates
the normalized power emission which the modeled XOR operation would cause. For each
image, the maximum value in the graphs is, therefore, the maximum bit flip count for

27

2 Power Analysis

Figure 2.5: Unobfuscated version Figure 2.6: 9 bit, obfuscated ror5

Figure 2.7: 32 bit, obfuscated ror1 Figure 2.8: 32 bit, obfuscated ror2

Figure 2.9: 32 bit, obfuscated ror4 Figure 2.10: 32 bit, obfuscated ror16

0% 100%25% 50% 75%

Heatmap scale: Normalized number of flipped bits.

28

2 Power Analysis

Bit flip count
Maximum Average Std. Dev.

Plain 32-bit (trunc) 9 4.5 1.5
Obfuscated 32-bit (trunc, ror1) 27 14.5 2.7
Obfuscated 32-bit (trunc, ror2) 27 15.5 2.8
Obfuscated 32-bit (trunc, ror4) 27 17.5 3.0

Obfuscated 32-bit (trunc, ror16) 36 22.5 4.5
Plain 9-bit 9 4.5 1.5

Obfuscated 9-bit (ror5) 25 13.5 2.6

Table 2.1: Bit flip count in various scenarios.

the displayed variant. This number is shown in Tab. 2.1. A normalized representation
was shown to highlight the relative differences in bit flips in dependence on the two input
registers since it is precisely such a difference which results in data leakage in the form of
a side channel.

In contrast to the original variant, the rotated XOR counterparts all have a dependence on
both operands. While there are still fractal patterns visible, the relationship is much more
intricate in the surrogate instruction combination. Note that even with this approach, the
instruction which causes the original leakage still causes the same amount of leakage. It
is, however, now surrounded by instructions which cause obfuscating leakage to decrease
the signal-to-noise ratio of the taken measurements. Also, note that in practice, multiple
of these instructions are executed randomly, and pre-charging is also applied. This means
that invariant register values are filled with random data to obscure power omission.

Tab. 2.1 shows statistical data on the performed operations. You can see that in the
unobfuscated 32-bit version the maximum number of bit flips is nine. This stems from
the fact that we truncated the collected data because the calculation of the whole 32× 32
matrix would have taken 264 operations. We therefore only take a look at a small fraction
of the 32-bit space, the least significant 9 bits. Note that for all obfuscated variants,
the total power emission rises by a factor of about three and the standard deviation
of the amount of flipped bits also drastically increases. This means that the overall
power consumption of a device which performs these calculations is increased. This
worsens the signal-to-noise ratio for an attacker who tries to perform DPA against the
implementation.

2.3.3 Register Transfer Instructions

When we wish to obfuscate register transfer operations, we can apply the same trick
which we already used in Sect. 2.3.2 and use the barrel shifter to cause bit flips through
a rotation. This can be easily done for the register to register transfer, as shown in the
original version in List. 2.7. We simply move the rotated variant in a first instruction and

29

2 Power Analysis

rotate the destination operand to its final value in a second instruction. This is shown in
List. 2.7.

; r0 = r3
mov r0, r3

Listing 2.7: Plain move register to regis-
ter instruction

; r0 = ror(r3, 16)
mov r0, r3, ror #16

; r0 = ror(r0, 16)
mov r0, r0, ror #16

Listing 2.8: Obfuscated move register to
register instruction

For the immediate to register transfer, as shown in List. 2.9 this is a bit more tricky but
still doable. In this case, we replace the mov by an XOR of a different, randomly chosen
register and our desired immediate value as the third operand. The register that is used
as a second operand cannot be selected completely at random (e.g., r13 and r15 are
not usable because they have special meaning on the Cortex-M and therefore cannot be
encoded in the eor instruction). In a second step, we cancel out our randomly chosen
register again by performing another XOR operation, leaving only the desired immediate
in place.
The modification relies on the assumption that the randomly chosen register contains
some uncorrelated data. For cryptographic algorithms, this usually is not the case. It
also has a second drawback: The original variant in List. 2.9 sets the condition code of
the CPU according to the value of the second operand. In this case, the condition codes
are set in a way that is only dependent on an immediate value and therefore entirely
predictable at compile-time.
We can, however, assume with good certainty that the compiler does not issue instructions
that rely on conditional code execution of an entirely deterministic comparison. The
reason for this is that an optimizing computer would simplify such a construction at
compile time. However, the possibility cannot be excluded and therefore we must check
that the instructions that follow the move instruction do in fact modify the condition
code register again. In other words, we need to be able to prove by static analysis that
the condition flags that are set by the move instruction are unused because they are
destroyed anyhow in instructions that succeed the mov. For all of our examples, this was
the case. The final obfuscated variant is shown in List. 2.10.
Note again that we additionally perform random pre-charging for the operands, but omit
that display here for clarity.

2.3.4 Bitwise Masking Instructions

In the analysis of instructions that cause the greatest power emanations, bit masking
instructions play a major role. Among those is the and opcode. Curiously, if one looks

30

2 Power Analysis

; r0 = 12345
mov r0, #12345

Listing 2.9: Plain move immediate to
register instruction

; r0 = r5 ^ 12345
eor r0, r5, #12345

; r0 = r0 ^ r5
eor r0, r0, r5

Listing 2.10: Obfuscated move immedi-
ate to register instruction

closer at the generated assembly code of a cryptographic computation, such as in the
case of AES-128, it becomes apparent that the and opcode is used almost exclusively
to mask out specific bits. Concretely, the third operand is usually an immediate value.
Again, for the AES-128 example which we analyzed, only three unique immediates are
ever emitted by the compiler: 0x03, 0x0f, and 0xfc. They are used to mask the least
significant 2 bits, the least significant nibble and the most significant 6 bits of the least
significant byte, respectively. All other 30, 28 or 28 bits of the register are set to zero
after the respective instruction executed.

This means in reverse that the value of the bits before execution of the and operation
is invariant to the semantic correctness of the code and can, therefore, be arbitrarily
modified by us to obfuscate power emission.

; r0 = r3 & 0x0f
and r0, r3, #0x0f

Listing 2.11: Plain bit masking instruc-
tion

; r0 = r3
mov r0, r3

; r0 = r0 ^ (r7 << 4)
eor r0, r0, r7, lsl #4

; r0 = r0 & 0x0f
and r0, r0, #0x0f

Listing 2.12: Obfuscated bit masking in-
struction

To obfuscate the code, we again choose the randomized register approach as was shown
for the mov instruction. We examine the immediate that is used in the and instruction
and determine its most significant bit. For 0x0f, this is bit three. We copy the register in
the first instruction using a mov. Then we combine a second, randomly chosen, register
with the copy using an XOR instruction. For the XOR we take care that the bits which
we want to have in the ultimate result are not affected. We do this by using the barrel
shifter to perform a logical shift left with the random register so that the shift width is
one bit greater than the exponent of the most significant bit of the and immediate. In

31

2 Power Analysis

the given example, the exponent is three and we, therefore, choose to perform a bit shift
of four bits. The register r0 now contains garbage data in the most significant 28 bits.
This garbage is masked out in the final and instruction. The combination of instructions
produces the same result as its unobfuscated counterpart, but with a difference in power
emission.

2.4 Efficient Runtime Recompilation

In the previous section, we showed some concrete examples of transformation which
alter the power emanation that a device exhibits during computation. This is, however,
only the first step to implementing code polymorphism at runtime. Indeed, the concrete
implementation is the much more complicated part and can be considered core to our
contribution.

To effectively perform the described masking operations, it is necessary to randomize the
selected primitives before each run of the algorithm. This ensures that, even if some part
of the data input to a cryptographic routine (like a symmetric key) remains identical,
the power emission still differs even for identical input data.

One simple approach to achieve this could be to pre-compile multiple differently obfuscated
variants of the same code all into the same binary. When masked function is called
during runtime, the system would randomly choose which variant is actually called by
some trampoline code. Such an approach has, however, the following problem: Consider
an algorithm which has such countermeasures applied in the described way. For example,
imagine an AES-128 encryption routine which has been obfuscated in n different ways.
Firstly, it would require that the code side would increase by a factor of nω where ω is
the factor by which the code increases through the applied transformations. This means
that n must be comparatively small because flash ROM of embedded systems is usually
very limited.

The other downside is, however, that an attacker can easily learn n. First, she can create
a single reference trace with arbitrary but fixed plaintext. Then she executes that same
operation with the same plaintext over and over again and correlates the recorded traces
against the references. If it does not match, it is recorded as a second variant in the
reference pool. This operation continues until the number of variants in the reference
pool does not increase anymore. In probability theory, this problem is well-known as the
coupon collector’s problem and has been described, for example, by Flajolet, Gardy, and
Thimonier (1992). Croucher (2006) explain how the mean µ and standard deviation σ of
the underlying normal distribution can be calculated for a given value of n:

µ1 = 1

µn = n · µn−1
n− 1 + 1

32

2 Power Analysis

LoC
k µ σ 0.95 0.999
8 21.74 3.71 29 34

16 54.09 6.17 66 74
32 129.87 9.89 149 162
64 303.61 15.48 334 354

Table 2.2: Number of required probes to catch all variants with certain levels of confidence
(LoC)

σn =

√√√√n−1∑
i=1

i

n− i

Tab. 2.2 shows some typical values. For example, if we calculate 64 differently obfuscated
variants to use for our countermeasure, it would take an attacker only 354 tries to see
each different variant at least once with a probability of at least 99.9%. As soon as
an attacker knows a distinguishing feature of these traces, she can bin them together
and perform power analysis on the binned traces. Therefore, it would only increase the
difficulty of the attack by a linear factor of n.

To prevent such binning, it is important to randomize not only which algorithm we take,
but also randomize the leaking fragments of code themselves. We decided to explore how
well runtime binary recompilation would work for this purpose. As Agosta, Barenghi,
and Pelosi (2012) have noted, there is a hefty runtime performance penalty which comes
with a recompilation. While it may work on a larger Cortex-M3 or Cortex-M4, runtime
disassembly and analysis of Thumb-2 code is definitively not computationally feasible on
a Cortex-M0 type device. However, when abstracting away from the actual assembly
code and viewing it as a pure bitstream, it becomes apparent that the recompiler does
not necessarily have to be aware of this kind of abstraction level while still being able
to perform adequate trace randomization. Our trick is to precalculate most operations
beforehand during compile time and generate an extremely simple bytecode stream which
performs the power emanation obfuscation. A minimalistic virtual machine (VM) then
interprets this bytecode stream at runtime, obfuscating the code which performs the
cryptographic computation. Afterward, the trampoline code calls the cryptographic
routine that was just modified by the VM code. The actual recompilation operates solely
on binary bitstreams and is blind to the assembly instruction abstraction. It, therefore,
can perform its purpose with such efficiency that it is feasible to call the reobfuscation
VM for every call to the underlying cryptographic primitive.

2.4.1 Virtual Machine Internals

The fact that the virtual machine bitstream is highly optimized makes the runtime
performance penalty comparatively small compared to other approaches. However, it

33

2 Power Analysis

Location Pointer
Register 0
Register 1
Register 2
Register 3

Program Space
0x0

0x20
0x30
. . .

0x10
mov cmp
eor.ne and
cbne ldrb
cmp b.ne

Figure 2.11: Internal construction of the morphing VM.

still is powerful enough to perform a wide range of code transformations. Our virtual
machine has five registers, all of which are 16 bits wide. The location pointer (LP) is
special since it points to the obfuscation target which resides in RAM. Addressing is done
solely with absolute addresses; they are, however, absolute only within the VM itself and
are, for the host system, relative to the start of the target in memory. Addresses are also
always 32-bit aligned. In fact, it is not possible to encode setting the LP to a non-aligned
address. This means that dereferencing of memory behind the LP can never throw a bus
error and is always executed with maximum performance (compared to two split loads
which some processors may perform in the background for misaligned access).

The VM features four registers r0 to r3, which are also all 16 bits wide. Fig. 2.11 shows
the general constitution of the reobfuscating VM. The machine bytecode typically resides
in a different memory area (typically inside the flash ROM of the microcontroller). It
allows encoding of four different opcodes:

• goto #absoffset: Sets the location pointer to an offset that is absolute within the
recompilation unit. #absoffset must be a multiple of four.

• genrnd #num, #range: Generates num (1 . . . 4) disjoint random integer values in a
range from 0 up to range, inclusive. Stores those integer values in the virtual machine
registers r0 . . . rnum−1.

• patch reg, #width, #srcoffset, #dstoffset: Takes width bits of a virtual ma-
chine register reg starting at bit offset srcoffset and patches those bits into the
32-bit word at the current location pointer at bit offset dstoffset.

• shuffle #blksize, #blkcnt: At the current location pointer, shuffle the following
blkcnt memory blocks of blksize each. Block size is a multiple of 2 bytes because
any valid Thumb-2 instruction is either 16 or 32 bits wide.

2.4.2 Examples

Some opcodes can be understood intuitively, like the goto opcode. The only caveat there
is that the encoded address is multiplied by four before being interpreted as an address.

34

2 Power Analysis

Opcode Parameters Range Encoding
goto A: #absoffset 0 . . . 65532 00AA AAAA AAAA AAAA
genrnd N: #num 1 . . . 4 01NN RRRR RRRR RRRR

R: #range 0 . . . 4095
patch R: reg r0 . . . r3 10RR WWWW SSSS DDDD

W: #width 1 . . . 32
S: #srcoffset 0 . . . 31
D: #dstoffset 0 . . . 31

shuffle B: #blksize 2 . . . 16 11BB BCCC
C: #blkcnt 1 . . . 16

Table 2.3: Opcode encoding.

LP: 0x8
r0: 0x2bc5
r1: 0x0
r2: 0x0
r3: 0x0

Program Space
0x0

0x8
0xc
. . .

0x4
00 01 02 03
ab cd ef 99
c0 ff ee 11
de ad be ef

Figure 2.12: Exemplary state of the VM before execution of the patch opcode.

0000 0000 0000 0000 0010 1011 1100 0101
0 0 0 0 2 b c 5

1100 0000 1111 1111 1110 1110 0001 0001
c 0 f f e e 1 1

1100 0000 1100 1010 1111 0000 0001 0001
c 0 c a f 0 1 1

Figure 2.13: Applying patch r0, #13, #3, #9 with r0 = 0x2bc5 and *LP =
0xc0ffee11.

35

2 Power Analysis

4× 2

3× 4

2× 8

Figure 2.14: Shuffling of different blocks and counts.

Opcodes like patch are more complicated, but still straightforward: Fig. 2.12 shows the
state of the VM just before execution of a patch instruction. In Fig. 2.13, we can see
the execution of this VM instruction. The patch width is 13 bits, and these bits are
taken with a bit offset of three from the source (register r0) and patched into the target
with a bit offset of nine bits. In the example, the original memory content consequently
changes from 0xc0ffee11 to 0xc0caf011. List. 2.13 shows an example of Python code
which could perform this transformation; the C equivalent looks almost identical and is
therefore omitted here for brevity.

def patch(value, regval, width, src, dst):
mask = (1 << width) - 1
patchval = (regval >> src) & mask
value = value & ~(mask << dst)
value = value | (patchval << dst)
return value

assert(patch(0xc0ffee11, 0x2bc5, 13, 3, 9) == 0xc0caf011)

Listing 2.13: Illustration of patch code run by the VM.

With a bit of illustration, the shuffle opcode is similarly easy to understand. Fig. 2.14
illustrates the mode of operation. It shows shuffling of four memory blocks with two
bytes each, three blocks of four bytes each and two blocks of eight bytes each, respectively.
In all cases, blocks with identical color are always moved contiguously. This means that
for a block count of k there are k! possible combinations that the resulting code can have,
giving a great number of possible randomizations for values up to k = 32. Note that
for the shuffle opcode, the block size can vary from 2 . . . 16 in two-byte increments.
Shuffling blocks in a misaligned manner (i.e., at offsets which are not divisible by two)
does not make sense practically since all opcodes are at least 16 bits wide.

2.4.3 Workflow

To clarify the entire workflow, it is shown graphically in Fig. 2.15. When the user wants
to protect a particular cryptographic routine which is available in source code, it first
needs to be placed in its own compilation unit. Then it is compiled by the target compiler

36

2 Power Analysis

compilation

static analysis masking

linking

call to remasking VM

run timeremaskable program
execution

compile time

cryptographic computation

statically masked assemblyremasking bytecode

assembly code

source code

remaskable executable

Figure 2.15: Remasking workflow.

to its assembly representation. This assembly code is then processed in two different
ways: Control-flow analysis is performed with the code and fragments which exhibit
potential side channel leakage is identified. These fragments are then substituted by
masking alternatives and yield the statically masked assembly. This assembly code then
already includes all the instructions which are used for obfuscating power emanation at
runtime, but all intermediates (such as the random values used for pre-charging) are
statically hardcoded. As such, when running from ROM, this code would only provide
little to no additional protection compared with the unprotected binary.

However, during the same time that the substitutions are generated, the analyzer also
records which exact substitutions the obfuscator has applied to which points of the code.
For this, during code generation of the statically masked assembly, the obfuscator inserted
unique machine-readable symbols at the specific locations where substitutions apply.
The statically masked executable is then assembled to its object code representation.
With the help of this object code representation, the code analyzer identifies at which
location within the compilation unit the applied code transformations lie. With that
information and knowledge about the constitution of the transformations, it can then
emit the remasking bytecode. This is the VM bytecode which is stored as raw data in a
C array.

The compiler combines the VM engine itself, its VM bytecode and the statically obfuscated
protected compilation unit and forms the final binary. During runtime, when the
cryptographic computation needs to be performed, the following happens: First, the
minimal trampoline stub relocates the protected compilation unit into SRAM. Then
it starts the VM and gives it the memory address of the relocated code. The location
pointer (LP) of the VM, therefore, indexes relative to the beginning of the relocated
code. Running the VM causes all statically applied obfuscations to be dynamically

37

2 Power Analysis

randomized and changed according to the previously defined VM recipe. Only then does
the stub function call the cryptographic routine. This guarantees that every execution
(and associated side channel leakage) varies randomly for each call of the target code.

2.4.4 Hardware True Random Number Generators

All software masking approaches, which want to evaluate the amount of protection
that they can offer honestly, need to consider the quality of the underlying entropy
source. To securely reobfuscate the target code, a good source of entropy is required.
In our experiments, we used Cortex-M0, Cortex-M3 and Cortex-M4 microcontrollers.
Of those, only the M4, an STM32F407VG, contains a true random number generator
(TRNG; STMicroelectronics N.V. 2011b, 2012). It would be dishonest to simply assume
a TRNG exists in all devices and omit the approaches for controllers without such
luxury, however. Even though we do not use masking tables, the results of Tunstall,
Whitnall, and E. Oswald (2014) apply to our approach: an adversary who faces masking
countermeasures which rely on low entropy sources can circumvent these and therefore
easily break the system.

To tap a source of entropy on Cortex-M microcontrollers, an approach that we looked
into was that of Van Herrewege, van der Leest, et al. (2013). They analyzed the entropy
present in the microcontroller SRAM after power up for an STM Cortex-M3 and came to
the conclusion that it is well suited to generate strong, true random seeds for a PRNG.
This PRNG, in turn, serves as the device entropy source.

A commonly described technique is the extraction of entropy from analog to digital
converter (ADC) noise. This would undoubtedly work on the devices we examined
since all are equipped with an analog to digital converter (ADC) in conjunction with an
internal temperature sensor. In firmware, code can connect them internally so they fit
our purpose (STMicroelectronics N.V. 2011b, 2012, 2015a,c).

We, however, tried to explore novel ways of utilizing existing hardware as sources of
entropy that would be difficult to manipulate externally. For this, we took a closer look
at the device-internal phase locked loop (PLL). The PLL is usually used to multiply an
internal reference clock to a much higher speed. However, due to the physical constraints
of a PLL, this clock multiplication cannot happen instantaneously, but the PLL needs
some time to lock, i.e., to settle down and become stable. Whenever the PLL is locked,
this is indicated by a register bit of the microcontroller because only then can the PLL
output be used as an internal clock source. Our idea is to extract entropy out of the
PLL locking time. This proved to be a surprisingly good source of entropy. We made
measurements with this entropy source and give an estimate of the amount of extractable
entropy in Sect. 2.5.

38

2 Power Analysis

2.5 Experimental Evaluation

In this section, we highlight the experimental results of the ideas we developed in the
previous sections. Sect. 2.5.2 explains how well our masking approach performed while
Sect. 2.5.3 shows how efficient our techniques for entropy generation on low-cost devices
are.

2.5.1 Static Analysis of Target

Since our approach made assumptions about the type of instructions which cause leakage
in cryptographic code — namely, binary manipulation and load/stores — and since we
mainly focused on these instructions, we now verify by analysis of actual code that these
instructions are really of primary interest for defending against DPA. For this purpose,
we evaluate some common cryptographic routines and categorize the instructions that
the compiler emitted for our target, the ARM Cortex-M3.

The Cortex-M3 uses the Thumb-2 instruction set (ARM Ltd. 2014; Yiu 2009). We
grouped Thumb-2 instructions which are commonly emitted into the following categories:

• arith: Arithmetic operations. Examples are add, sub, mul.

• bitwise: Bitwise operations. Examples are and, or, eor, lsl, ror.

• branch: Branch operations. Examples are b, bx, bl, bne, cbz.

• cmp: Comparator operations. Examples are cmp, tst, it, ite, cmn.

• ldst: Load and store operations. Examples are ldr, str, ldmia, stmia.

• mask: Bit masking operations. Examples are uxtb, uxth, sxtb, sxth.

• move: Register move operations. Examples are mov, movn.

• stack: Direct stack manipulation operations. Examples are push, pop.

Two things are noteworthy about the measurements which are shown in Tab. 2.4. First,
the optimization level does not make a large difference and can be disregarded for all
further analysis. Secondly, it shows that our basic assumption is true: The amount of
bitwise instructions, load/store functionality and register transfer account for most of
the instructions. We furthermore looked into the source of arithmetic instructions in the
code. Such instructions were almost always used for purposes in which little or no side
channel leakage can be expected, such as incrementing loop counter variables. However,
the algorithms we looked at are also focused primarily on binary data transformations;
for algorithms which use arithmetic transformation such as XTEA by Needham and
Wheeler (1997), our approach could however be easily extended also specifically to protect
arithmetic manipulation of data.

39

2 Power Analysis

AES-128 (LUT) AES-256
-O2 -O3 -Os -O2 -O3 -Os

arith 14.4% 8.4% 16.2% 7.0% 4.7% 7.0%
bitwise 16.4% 19.3% 16.8% 18.1% 25.7% 18.5%
branch 9.6% 6.2% 11.2% 11.3% 10.7% 15.6%

cmp 8.5% 8.1% 10.9% 7.5% 8.4% 3.6%
ldst 28.3% 40.3% 25.4% 38.1% 25.5% 33.0%

mask 3.7% 2.8% 3.2% 5.6% 10.3% 4.3%
move 16.1% 12.8% 13.3% 8.7% 13.7% 13.4%
stack 2.8% 2.1% 2.9% 3.8% 1.1% 4.6%

SHA-256
-O2 -O3 -Os

arith 14.1% 13.3% 15.6%
bitwise 12.5% 13.0% 14.1%
branch 7.7% 6.5% 8.0%

cmp 6.1% 3.8% 3.8%
ldst 38.4% 46.6% 41.4%

mask 0.0% 0.0% 0.0%
move 18.5% 14.6% 14.8%
stack 2.7% 2.2% 2.3%

Table 2.4: Emitted instruction groups of different cryptographic algorithms.

2.5.2 Masking Results

We did measurements on the effectiveness of the DPA masking algorithms on both a
Cortex-M0 STM32F030C8 and a Cortex-M4 STM32F407VG. We only discuss the details
of the weaker device, the M0, in-depth, but unsurprisingly the results for both platforms
are quite similar. The current was measured over a resistive 10 Ohm high side shunt
with a custom-made differential probe that used the Analog Devices AD8129AR. Our
schematic was heavily influenced and inspired by the ChipWhisperer differential probe of
O’Flynn and Chen (2014). We used a mid-range Rigol DS2202 oscilloscope to perform
our measurements to take the role of an attacker with reasonable hobbyist equipment. We
sampled the current at 1 GS/s for acquisitions of 2.7 MPts in each trace. We transferred
this data to the evaluating PC via Ethernet using the LXI protocol. We then used
differential power analysis using a standard Hamming difference model to extract one
byte of the cryptographic key of an AES-128 encryption in ECB mode. The AES source
code we used for evaluation was a public domain reference implementation by Paulo
Barreto. Our results compare the unprotected against the protected AES-128 variant.

The results of the DPA attack are shown in Fig. 2.16a and Fig. 2.16b. In both cases,
the black trace shows the correct key hypothesis. On the top, the unprotected variant

40

2 Power Analysis

(a) Unprotected.

(b) Protected.

Figure 2.16: Number of considered power traces against peak correlation coefficient. Black
trace shows the correct key hypothesis.

41

2 Power Analysis

Static AES modifications 234 bytes (1034 bytes total)
PRNG 1124 bytes
VM code 210 bytes
VM bytecode 288 bytes in 145 opcodes

Table 2.5: Flash ROM space demands incurred by protection mechanisms.

Necessary entropy for VM run 231 bit
PRNG speed 3.6 µs (29 CC) per byte
Total time for entropy collection 104 µs (835 CC)

Table 2.6: Time and clock cycle (CC) count necessary for entropy collection.

is shown. The correct key hypothesis is easily discernible from the remaining traces.
The image on the bottom shows the runs after randomized masking had been activated.
Reobfuscation was applied before each AES operation.

Tab. 2.5 shows the requirements on flash ROM that were demanded by the implemented
countermeasures. The AES implementation itself only grows by a small amount (800
bytes for the original, 1034 bytes for the protected variant, i.e., a 29% increase in code
size). Most of the ROM was needed by the reference ISAAC PRNG implementation.
The VM code, due to its extreme simplicity, is tiny (210 bytes). In fact, even the VM
bytecode instructions (288 bytes) are larger than the VM execution engine itself.

Regarding runtime, Tab. 2.7 gives an overview. The unprotected AES encryption
operation took 2.18 ms on our device. This rises to 2.99 ms for execution of the protected
AES. Additionally, to the pure execution time, there is management overhead that comes
with the protected variant. For once, our PRNG was measured to produce 256 bytes of
entropy in about 920 µs. This averages at about 3.6 µs per byte of entropy out of the
PRNG, as shown in Tab. 2.6. For the VM runtime requirement of 231 bits, i.e., 29 bytes,
this means a duration of 104 µs. Additionally, the code needs to be relocated from ROM
to RAM (880 µs), and the VM needs to run to perform the remasking (770 µs). All in
all, a fully protected AES run takes around 4.74 ms which is about 2.2 times that of its
unprotected counterpart.

Entropy collection (see Tab. 2.6) 104 µs (835 CC)
Relocation duration 880 µs (7040 CC)
Reobfuscation duration 770 µs (6160 CC)
Protected AES runtime 2.99 ms (23920 CC)
Total time for protected AES run 4.74 ms (37955 CC)
Unprotected AES runtime 2.18 ms (17472 CC)

Table 2.7: Protection runtime and clock cycle (CC) count.

42

2 Power Analysis

Figure 2.17: 512 kiBit of preconditioned collected entropy from PLL lock time source.

2.5.3 Entropy Collection

In our experiments, we implemented our idea to use the PLL as entropy source (see
Sect. 2.4.4). On an STM32F030C8 which was clocked from an 8 MHz high-speed external
(HSE) crystal oscillator, we collected entropy in the fashion that was described there. We
made around 57 million trials in which we configured the internal PLL to get its reference
clock from high speed internal (HSI) RC oscillator clock divided by two (i.e., 4 MHz).
This clock was to be multiplied by a factor of 12 to result in the maximum speed of 48
MHz. The typical time for the PLL to settle was 69 µs in 98.2% of cases, 61 µs in 1.5%
and 78 µs in the remaining 0.3% of cases. Of these, we interpreted the 98.2% majority
as one outcome of a coin flip operation and the remaining 1.8% as the other. Then we
applied the standard unbiasing procedure as described by von Neumann (1951), where
the outcome of two captured events was compared. If the outcomes were identical, both
were discarded; were they not equal, the first of both values was taken as the unbiased
value. While 98.2% to 1.8% seems like a significant disparity, the high acquisition speed
of about 14.5 kBit/s compensates for this. In our experiments, we were able to extract
successfully about 927 kBit of unbiased entropy from the 57 million operations. The
ratio of extracted entropy to the number of trials was 1.6%. This gives about 268 bits of
unbiased, extractable randomness per second from this entropy source.

Also, we repeated the experiments of Van Herrewege, van der Leest, et al. (2013) to check
if they also apply to the STM32F030C8. For this, we erased the on-chip flash ROM
memory so that the chip would immediately hard fault at reset. Then we extracted the
SRAM contents via JTAG. During measurement, we were careful that the JTAG adapter
did not parasitically power the chip itself by separating all the serial wire debug (SWD)
interface lines as well as the supply voltage using mechanical relays. Before power-off,
we used the JTAG interface to fill the SRAM with random data to eliminate hysteresis
effects of memory cells. We performed 2700 of these measurements, extracting 8 kiB of
uninitialized SRAM at each run (i.e., about 21 MiB of data). In our trials, we deliberately

43

2 Power Analysis

varied the ambient temperature between 15 °C up to 40 °C. We found that the SRAM
power-up initialization contained many static elements. Over all 2700 runs, we saw
behavior reminiscent of physical unclonable functions (PUFs): 48370 of the 65536 bits
(i.e., 73.8%) always took a fixed value after the chip reset. There still is an abundance
of random bits within the SRAM initialization pattern with the remaining 17166 bits
(26.2%). So overall, we could confirm the results of Van Herrewege, van der Leest, et al.
(2013): Uninitialized SRAM is a plentiful entropy source that comes “for free” regarding
runtime cost for acquisition and only has to be conditioned to be used. However, using the
entire SRAM as source creates the problem of storing entropy for later use. Furthermore,
the entropy is only generated once per reset of the system. In contrast, our entropy
source is infinite but requires additional runtime cost.

For the concrete implementation and running of our VM, we used both entropy sources to
feed an ISAAC CSPRNG (Aumasson 2006; Jr. 1996) for entropy mixing and conditioning.
If entropy pool mixing performance should be a problem, an alternative is to follow
the steps described by Van Herrewege and Verbauwhede (2014) who describe how to
implement a lightweight, fast CSPRNG using Keccak for the Cortex-M platform.

2.6 Conclusion

We presented novel techniques with which effective masking transformations can be
realized efficiently even on small Cortex-M0 microcontrollers. Obviously, the main
drawback of our solution is that it requires a writable code segment for the dynamic
recompilation to occur. In exchange for this, however, it executes with excellent runtime
performance all while implementing resistance to power analysis. No special hardware
such as a TRNG is required for our approach to work. Our work aligns well with the
existing literature on software-only countermeasures and provides a different angle to
complete the spectrum of tools and possibilities which software engineers have.

Another drawback of a software-only approach is the negative impact on performance.
However, this is something that can be fine-tuned with our approach in two dimensions:
Firstly, the developer can decide that reobfuscation of the relocated binary code does
not need to happen every time. This gives a linear performance gain with the number of
run trials. The second dimension happens during compile time. It also is up to the user
to decide how heavily surrounded the potentially leaking code should be with code that
aims to obfuscate power emanation. Our work, therefore, gives the developer the tools
to fine-grain their actual implementation according to their needs regarding efficiency
and security.

In our opinion, the amount of attacks on low-cost microcontrollers is, in all likelihood,
increasing in the near future due to the sheer simplicity with which attackers can
conduct them today. We hope our work gives a good impression on what cost-effective
countermeasures can be realized by creatively leveraging the tools that are already present
in hardware.

44

Chapter 3

Timing Channels

Leakage of information through timing side channels is a problem for all sorts of computing
machinery, but the impact of such channels is especially dramatic on embedded systems.
The reason for this is that these environments allow attackers to exploit small timing
differences down to clock cycle accuracy. On the defensive side, it is, therefore, advisable to
evaluate cautiously if security-critical code contains data-dependent timing discrepancies.
When working with real hardware, testing for such vulnerabilities is a tedious process. To
reduce the burden of vetting, we study approaches that allow cycle-accurate behavioral
emulation of relevant CPU behavior such as instruction pipeline flushes and bus contention.
We show that our approach is feasible and efficient by implementing an emulator of
the popular ARM Cortex-M core. Furthermore, we give an overview of the problems
of cycle-accurate emulation and demonstrate our approach towards a cycle-accurate
ARM Thumb-2 simulator. As a practical application, we show how this simulator can
be integrated into the build process of firmware to check for the presence of timing side
channels before the system is deployed.

This chapter has been accepted for publication as a full paper at the 11th International
Conference on Availability, Reliability and Security (Bauer and Freiling 2016).

3.1 Introduction

Security issues in real world systems do not only arise due to a flawed design but also
due to parasitic side effects which any computing machine exhibits. Differences in the
power consumption, for example, lead to the presence of so-called power emission side
channels. When the electromagnetic emission of the hardware changes with the data
that is handled in a certain computation, we speak of EM side channels. The most
intuitive class, however, are timing side channels. In these, some leakage is inadvertently
generated by the fact that computations on secret data exhibit timing differences that
depend on that data.

These timing side channels have been known since their first introduction by Lampson
(1973). In modern systems, they usually arise due to different optimizations within
hardware or software. The reason why they are so prevalent on desktop computers, for
example, is that desktop CPUs are using extraordinarily sophisticated techniques to
optimize system performance aggressively. Such techniques include caching, instruction
reordering or branch prediction. Unfortunately, these methods give rise to data and code
dependent timing behavior.

45

3 Timing Channels

Traditionally, in embedded environments, these hardware optimization techniques were
neither necessary nor were they particularly welcome. Since embedded systems and
real-time computing often go hand in hand, predictability is of utmost importance to
developers. Sophisticated mechanisms like branch prediction or caching were not prevalent
at all. In more recent microcontroller architectures, however, these mechanisms slowly
start to appear. In particular, the popular ARM Cortex-M architecture, which has picked
up significant momentum in the last few years, shows features which previously only
were present on highly sophisticated PC CPUs. One reason for their introduction is
that internal MCU peripherals often cannot keep up with the high core clock speeds of
modern microcontrollers. Without caching mechanisms, the slowest peripherals, such as
flash ROM, would restrict the overall performance of the system significantly. With the
introduction of these techniques, however, the same timing side channels which were also
seen in PC environments before now also appear in microcontrollers.

One significant difference, however, is the fact that in an embedded environment, timing
side channels leak more information than in a PC environment. On a PC, an attacker
usually needs to rely on imprecise measurements of time stamp counters and significant
noise is present due to effects of the operating system. Such limitations are far less
common in the embedded world. An attacker with physical access to a device is usually
able to control the primary clock source and has, therefore, the ability to slow down
time to his liking. With today’s mid-range hobbyist equipment, it is possible to perform
cycle-accurate timing measurements on such embedded systems. In many cases, the
firmware runs directly on the bare metal, i.e., directly on the hardware with no operating
system layer in between. Even if an embedded operating system is present, it usually
exhibits much more predictable timing characteristics than operating systems for the
consumer market.

The motivation of such an attacker could be to gain access to an otherwise unavailable
administration interface or extract information about the internal workings of such
a device. For example, if an attacker would control a smart meter and obtain the
asymmetric private key, she could forge meter values and send arbitrary data to the
utility company. Likewise, an attacker could find a master password for a manageable
switch using timing attacks; although bad security practice, many vendors still ship their
devices with such back doors in the hope that the protecting password remains secret.

3.1.1 Related Work

As with a lot of practical side channel work, Kocher (1996) also pioneered the field
of timing side channel analysis. He highlighted that timing differences in asymmetric
cryptographic operations could lead to the disclosure of private key data. Two years later,
other implementations of his proposals emerged and were published by Dhem et al. (1998,
2000). Around the same time, Kelsey et al. (1998) generalized on these side channels
and showed their presence in popular algorithms such as IDEA, RC5, and DES. Of
particular interest to our work is the timing side channel they described in IDEA, where

46

3 Timing Channels

they exploited the timing difference present in a multiplication modulo 216 + 1. In their
example, a multiply-by-zero operation took significantly less time than a multiplication
by a non-zero value.

Such side channels commonly accompany software-computed algebraic field operations.
At that time it was widely believed that an effective defense against this kind of timing
attacks would be to use constant-time lookup tables for field operations. Page (2002),
however, showed how cache timing might cause these supposedly constant-time lookups
to exhibit exploitable timing differences. Indeed, Tsunoo et al. (2003) demonstrated
the effects of leakage caused by caching effects to be relevant on real-world systems.
Exploiting timing differences, they were able to break DES with a probability of over
90% with an astonishingly low amount of 224 operations. Such attacks were later shown
by Bernstein (2005) also to apply to the more recent AES block cipher. A relatively
well-known hack on the MSP430 mask ROM boot loader was presented by Goodspeed
(2008): He exploited the timing differences of different control flow paths to find out the
correct boot loader password of MSP430 devices.

Osvik, Shamir, and Tromer (2006) proposed a general mitigation method for these
problems based on different approaches such as normalization of cache timings, disabling
of caches altogether or hiding mechanisms to obfuscate the leakage. Z. Wang and Lee
(2007) proposed hardware countermeasures, namely a new type of cache architecture,
which claimed to solve side channel emission. However, Kong et al. (2008) highlighted
serious issues with this proposal, confirming yet again how difficult it is to eliminate side
channels in cached architectures.

Cycle-accurate simulation is a topic that is not only of interest to security researchers but
also for optimization purposes. Yourst (2007) presented such a cycle-accurate simulator
for the x86-64 architecture. Since the x86-64 is much more complicated than the
Cortex-M architecture, their goal was to achieve 5% accuracy for all the key simulation
parameters; since the sophisticated optimizations of the x86-64 are not present in the
Cortex-M architecture, the relative timing determinism of the Cortex-M enables much
more accurate results in our case.

The Cortex-M uses internal SRAM for volatile storage, which is another contributing
factor to the relatively straightforward implementation of an emulator. In contrast to
DRAM, SRAM exhibits deterministic timing characteristics. To apply our results to
DRAM, one could rely on complex simulations of DRAM timings, such as in the paper
presented by Rosenfeld, Cooper-Balis, and Jacob (2011).

If the performance of the emulator is of interest — which for us was a secondary objective
only — the work of Ye et al. (2000) is also of interest. They show which optimizations
apply to a simulator while preserving its emulation accuracy. In their case, they use their
technique to improve the efficiency of a power consumption simulator.

Our approach relies on behavioral simulation of the architectural features. How proces-
sors can be modeled from a hardware perspective, for example during simulation of a
synthesized FPGA, is covered by the work of Reshadi and Dutt (2005).

47

3 Timing Channels

3.1.2 Contributions

We present a practical approach to detecting timing side channels in Cortex-M firmware.
Our goal is to detect such channels reliably at implementation time. To do this, we
built a behavioral Thumb-2 emulator with the particular purpose to correctly model
timing behavior of the Cortex-M architecture down to clock cycle accuracy. We show
how this emulator can help identify possible timing side channel leakage and how it can
be incorporated into automatic vetting checks. To summarize, we make the following
contributions:

• We describe our semi-automatic method of extracting hardware-dependent information
about runtime behavior from a real microcontroller and how to use this knowledge to
create a cycle-accurate Cortex-M core emulator.

• We show how such an emulator can be integrated into the vetting process to prevent
timing side channel leakage for embedded systems in an automated fashion.

3.1.3 Outline

This chapter is structured as follows: Sect. 3.2 gives the necessary background to
understand aspects of modern CPU design which are relevant to our topic. We then
proceed to discuss the factors which influence runtime behavior of our target platform in
Sect. 3.3 and highlight important aspects of the design of a cycle accurate emulator. In
particular, we point out how real-world measurements on physical hardware can quickly
be turned into a model for an emulator which we wrote. Our design is then evaluated in
Sect. 3.4 against real-world cryptographic algorithms and we give an example of how our
simulator can be integrated into a build workflow to achieve a semi-automatic vetting
process. Afterward, we discuss the results and give an outlook in Sect. 3.5.

3.2 Background

In the following section, we give an overview of relevant concepts of modern CPUs in
Sect. 3.2.1. Then we proceed to show details about the particular CPU family (ARM
Cortex-M) which we worked with in Sect. 3.2.2.

3.2.1 Factors Influencing Execution Time in Modern CPUs

The internal construction of a modern CPU divides instruction execution into three
phases: the fetch, decode and execution stages. At the first stage, one or more instructions
are loaded from the position to which the program counter points. This is done via a read
on the bus which fetches the data from that address. In the next state, the instruction is
decoded. This means the CPU evaluates which sub-components of the CPU need to be

48

3 Timing Channels

Time

Load 1 Decode 1 Execute 1

Load 2 Decode 2 Execute 2

... ...O
pe

ra
tio

ns

Figure 3.1: Pipelined instruction execution

enabled to perform the action which is requested by the opcode. After it determines this,
the instruction is executed. In the process of execution, there might again be access to a
memory bus required, depending on the action that the opcode is supposed to perform.

Loading of instructions and decoding or execution can be parallelized. This is called
pipelining and is shown in Fig. 3.1. While the CPU executes the first instruction, it can
already — at the same clock cycle — concurrently fetch the next instruction. If the
CPU has prefetched instructions and filled up the pipeline, but notices in the decoding
stage that the prefetched instruction is not the next in line to be executed, the pipeline
needs to be flushed, and it needs to be refilled with the correct instructions. This is the
case, for example, when a conditional jump takes control flow away from the instructions
which the CPU had already prefetched.

There are also multiple factors which influence how long the execution stage of instructions
takes. First and foremost is, of course, the actual computation that has been requested
by the opcode itself. Some complex instructions need to be broken down by the CPU
into smaller micro-instructions which are computed sequentially. For example, if there is
a register indirect access with displacement, the CPU has first to calculate the effective
address and then execute the actual memory operation. The instruction is therefore
broken into two parts: address calculation is performed by the arithmetic logic unit
(ALU) after which comes the store operation. Both parts may or may not be pipelined,
depending on the concrete architecture. The typical example of a complex instruction
which takes a variable amount of clock cycles to execute is the integer division operation.

Another factor which influences runtime is the dependency on a bus. Only one load or
store can happen on a bus at any point in time. Access to the bus, therefore, has to be
carefully coordinated. If multiple concurrent requests require bus access, bus contention
occurs, and the CPU must perform arbitration between the concurrent requests. The
bus peripherals might also have some inherent latency associated with it. For example,
typical external memory or internal flash ROM cannot serve data as fast as the internal
CPU clock might require it for continuous operation. Therefore, the CPU has to wait
some amount of time after the address has been put onto the bus before the data becomes
valid. The time during which the CPU waits for a reaction from the bus is indicated by
the number of wait states.

Lastly, caching is something that has a significant influence on the real world runtime of

49

3 Timing Channels

a system. A cache miss is associated with the penalty to perform the actual read from
the bus while access to cached data is typically faster by several orders of magnitude.

3.2.2 STM32 Cortex-M4 Specifics

The popular 32-bit Cortex-M architecture uses the ARM Thumb-2 instruction set. This
is an instruction set in which opcodes are encoded either in the narrow 16-bit form or
in the wide 32-bit form. The CPU core of the M4 uses an instruction pipeline which is
32 bits wide. Therefore, depending on the width of the instructions at the location of
the program counter, either two narrow or one wide instruction is prefetched into the
instruction pipeline (STMicroelectronics N.V. 2011b). Most instructions of the Cortex-M
take either one or two clock cycles to execute, with the notable exception of the division
unit which, depending on the processed data, takes anywhere in between 2 and 12 clock
cycles for execution (ARM Ltd. 2010). For operations which perform load/store actions,
there is an additional penalty associated that is directly proportional to the amount of
data that is to be loaded or stored.

While most System-on-Chips (SoCs) that target the embedded market go without any
caches because it makes predictions about execution time much more challenging, the
STM32 Cortex-M4 does have one instruction cache. This cache is referred to by STM as
the adaptive real-time memory accelerator (ART). It caches access to the internal flash
ROM memory which is unable to keep up with the core clock when the microcontroller
unit (MCU) runs at high speeds. For example, at 3.3V the internal STM32F4 flash ROM
can only provide zero wait state operation up to 30 MHz, but can require as many as
seven wait states at the low-voltage 1.8V operation when the CPU is clocked faster than
112 MHz (STMicroelectronics N.V. 2011a,b).

Like almost all architectures within the Cortex-M family, the M4 is based on a Harvard
memory architecture. Concretely, this means that data and instructions are accessed
via different buses. For normal operation, the text segment (i.e., where the executed
instructions reside) is located within the flash ROM of the MCU and data is stored in
the internal SRAM. Instructions are usually fetched via access to the instruction bus
(I-Bus), but may also be fetched on the system bus (S-Bus), albeit less efficiently. Data
access is performed on the data bus (D-Bus) or also via the S-Bus. The I-Bus and D-Bus
can access only the lower 512 MiB of the 32-bit address space while the S-Bus can access
almost all the remaining 3584 MiB (ARM Ltd. 2010; STMicroelectronics N.V. 2011b).

3.3 Cycle-Accurate Timing Simulation

We now focus on a particular microcontroller and briefly describe the effects that make a
naïve prediction of execution time difficult. We continue by explaining the constitution
of our emulator model is and how it integrates into semi-automatic verification of code.

50

3 Timing Channels

3.3.1 Execution Time Prediction

The standard attacker model for embedded systems places the system itself under full
physical access of the attacker. This means an attacker can control the environment
in which the microcontroller executes code. Part of the environment is a reference
clock which is usually supplied externally in the form of a quartz crystal. An attacker
who has physical access to such a system can, therefore, modify the hardware itself
(e.g., by changing this clock crystal) to force the system to slow down. This allows
maximally precise, cycle accurate measurement with even mid-range commercial off-the-
shelf hobbyist equipment. Any single clock cycle difference in timing can lead to an
exploitable security vulnerability of such a system.

Consider the source code which we present in List. 3.1. It shows a memcmp function which
differs from the standard memcmp in the way that no lazy abort is performed as soon as
the first inequality is encountered between characters of the two supplied input buffers.
While the overall result still is computed in a lazy fashion, the function always walks over
the complete buffer in every case in an attempt to achieve constant execution time. This
is something that a programmer who is aware of potential timing side channel leakage
might do.

int memcmp_cet(const uint8_t *a, const uint8_t *b, int len) {
int result = 0;
for (int i = 0; i < len; i++) {

int char_result = a[i] - b[i];
if (result == 0) result = char_result;

}
return result;

}

Listing 3.1: High-level memcmp routine which tries to achieve constant execution time

If you take a look at List. 3.2 you can see how the GNU C compiler gcc 5.2.0 translated
this code into ARM Thumb-2 assembly. You can see that the loop indeed covers all len
bytes. However, you might also notice that the compare-branch-if-not-zero instruction
at 0x9b4 conditionally skips the following subs instruction if result != 0. This is the
translated equivalent of the if condition. The code has, therefore, less work to do once
result != 0 and you might assume that it executes a tiny bit faster whenever the subs
is skipped.

To show the real-world effect of this code, we ran it on an STM32F407 microcontroller
with variable input data. We then used the embedded trace macrocell (ETM) which we
configured to monitor the executed cycle count using the CPU-internal data watchpoint
trigger (DWT). The code to do this is shown in List. 3.3. Our results were checked for
plausibility by connecting a Rigol DS2202 oscilloscope to the microcontroller. The code

51

3 Timing Channels

memcmp_cet:
9a4: 2300 movs r3, #0 ; r3 = 0 (i)
9a6: b570 push {r4, r5, r6, lr}
9a8: 4604 mov r4, r0 ; r4 = r0 = a
9aa: 4618 mov r0, r3 ; r0 = r3 = 0 (retval)

loop:
9ac: 4293 cmp r3, r2 ; if (i < len)
9ae: da05 bge.n 9bc ; then goto exit
9b0: 5ce6 ldrb r6, [r4, r3] ; r6 = r4[r3] (a[i])
9b2: 5ccd ldrb r5, [r1, r3] ; r5 = r1[r3] (b[i])
9b4: b900 cbnz r0, 9b8 ; if (r0 != 0) goto skip
9b6: 1b70 subs r0, r6, r5 ; r0 = r6 - r5 (retval)

skip:
9b8: 3301 adds r3, #1 ; r3 += 1 (i++)
9ba: e7f7 b.n 9ac ; goto loop

exit:
9bc: bd70 pop {r4, r5, r6, pc}

Listing 3.2: Compiled memcmp routine in Thumb-2 assembly

surrounding the profiling target generated a rising edge on a GPIO pin upon entry of
the function and a falling edge on the return. We then triggered on the rising edge but
watched the falling edge of the signal with the infinite persistence function enabled. The
different runtimes of the function can then clearly be seen on the oscilloscope.

When running the code from internal flash ROM, with a core clock of 8 MHz, the runtime
of a comparison in which the first characters differed was 196 cycles. For each byte at the
head of the buffers which were equal, the routine became faster one clock cycle. Similar
effects could be observed with code running from internal RAM: A comparison which
differed at the first character took 279 clock cycles, but the routine also became faster
for each correct heading character by four clock cycles.

Two aspects of this might seem odd and surprising: One is that the routine, no matter from
where it is executed, becomes faster with an increasing count of equal heading characters.
From the high-level perspective, more work has to be done for each equal heading byte,
so you might assume the routine to become slower for each match. Intriguingly, the
opposite is the case. It also seems counterintuitive that the routine would run much
faster from internal flash memory than when it runs from internal SRAM since the latter
is typically far quicker regarding access times than flash ROM.

When taking a closer look at the architecture, however, both effects can be explained:

52

3 Timing Channels

// Instruction Trace Macrocell, unlock register access
ITM->LAR = 0xC5ACCE55;

// Debug Exception and Monitor Control, enable trace cell
COREDBG->DEMCR |= TRCENA;

// Reset counter and set trace cell mode to cycle counting
DWT->CYCCNT = 0;
DWT->CTRL |= CYCCNTENA;

Listing 3.3: Activation of cycle counting on the STM32F4

That the routine becomes faster with each matching character stems from the fact that
the compare-branch-if-not-zero instruction cbnz needs to skip the following subs by
performing the conditional branch. The performance penalty which incurs with this
taken branch is caused by the required instruction pipeline flush.
That flash ROM, in this particular case, is actually faster than SRAM is also explainable:
When instructions are loaded from internal flash ROM, the I-Bus is connected to the
flash peripheral and the data access to RAM is performed via the S-Bus. As soon as both
instructions and data come from RAM, however, the S-Bus has to be used for both: it is
the only remaining bus that can access SRAM. This explains why performance decreases
once instructions are served from SRAM. Bus contention and arbitration are leading to
this degradation in performance.
Another effect that we would like to illustrate is the effect of wait states when retrieving
data from flash ROM. Consider the code given in List. 3.4.

#define FLASH_ROM ((volatile const uint8_t*)0x08000000)
#define RAM ((volatile const uint8_t*)0x20000000)

int waitstate_test(int len) {
uint8_t result = 0;
for (int i = 0; i < 10000; i++) result ^= RAM[i];
for (int i = 0; i < len; i++) result ^= FLASH_ROM[i];
return result;

}

Listing 3.4: Code to demonstrate wait state influence

This code first XORs the first 10000 bytes of SRAM to get a steady baseline and then
XORs n bytes of flash ROM on top of it. We executed that function and for each run
determined the clock cycle differential in runtime between the invocation with a byte

53

3 Timing Channels

5

10

15

20

25

30

8 16 24 32

C
lo
ck

cy
cl
e
di
ffe

re
nt
ia
l

Amount of bytes (n)

Cache disabled
Cache enabled

Figure 3.2: Different execution times in dependence of copied bytes n

count n and the subsequent invocation with byte count n+ 1. Intuitively speaking, this
gives us for every n the amount of clock cycles that the run additionally takes compared
to its previous run. To not confuse issues, we ran our tests both with instruction and
data caches enabled and later on again with all caches disabled. On actual hardware, the
timings we measured are shown in the plot in Fig. 3.2.

What can be seen quickly is that the cache does have an effect on the total number
of clock cycles, but it does not have an effect on the clock cycle differential. With all
caches enabled, each new byte takes 10 more clock cycles except for the crossing of a
16-bytes boundary where this additional byte takes 15 clock cycles. For the case in
which caches have been disabled, the same effect can be observed with the exception that
the differential is usually 21 clock cycles and jumps to 26 clock cycles when crossing a
16-bytes boundary. The difference (5 clock cycles) is a direct consequence of the system’s
flash ROM wait states.

3.3.2 Architectural Modeling

To try to predict the timing accurately, we developed a behavioral ARM core emulator. In
the beginning, we briefly looked into the option of modifying already existing emulation
code (such as QEMU), but it soon became apparent to us that most already existing code
was written predominantly with performance in mind. Such code would likely have been
difficult to turn into something that was usable for cycle-accurate simulation and we,
therefore, developed our emulator from the ground up in the C programming language.

54

3 Timing Channels

To systematically determine execution time of code on hardware, we wrote platform
evaluation code that allowed us to download code dynamically into the MCU’s SRAM
and have it execute with enabled ETM/DWT instrumentation. The result was a semi-
automatic process in which the instructions which were of the greatest interest to us were
evaluated regarding their runtime performance. We omitted modeling of instructions
which are not relevant for cryptographic purposes in general and for our use case in
particular. Those were, among others, all floating-point unit (FPU) instructions the
MCU offers. The runtime information was collected by a host PC which was attached to
our evaluation platform via RS232.

In our semi-automatic modeling process, the act of combining already evaluated instruc-
tions to form more complex code fragments was taken care of by a Python program.
For all instructions which were not modeled, initially, an execution time of zero was
assumed — something that is deliberately wrong. We then randomly generated valid
code snippets using a Python program which emitted increasingly complex sequences
of instructions. These randomly generated code fragments were executed within the
emulator and compared against the results returned by the actual hardware over the
RS232 connection. In the first training stage, it only emitted single instructions with
no memory access, and that could not fail (for example, division instructions were not
used in this stage since they can produce arithmetic errors when the dividend is zero).
At a later time, we added memory-transfer operations; afterward, we added even more
complex snippets of code in which conditional branch instructions occur. For the last
group, we gave our code generator a coarse framework in which the branching instructions
were to be embedded to avoid infinite looping or other undesired, undefined behavior.

Every produced code snipped was automatically generated, compiled and run locally
by our emulator. As described, it was simultaneously downloaded on an STM32F4 and
its execution was profiled on the real hardware. Whenever a discrepancy between the
simulation and hardware arose, the code generator stripped the examples down to a
minimal code fragment that still exhibited the issue. This allowed the developer in charge
of modeling the device behavior to be able to pinpoint erroneous instruction emulation
precisely and update the model accordingly. By this process, we were able to achieve
convergence towards an accurate model which simulated standard cryptographic code
(i.e., code that makes heavy use of bitwise Boolean arithmetic such as that in the AES or
the SHA families) within just a few days.

The whole emulator is around 12000 lines of code (LOC). The greatest part of this,
however, is taken up by instruction decoding (around 6000 LOC), while simulation core
is around 1800 LOC long. Of the 233 non-FPU opcode variants, we emulate 114, i.e.,
around 49%. The instruction decoding code is generated using a self-written Python
code generator from an XML architecture description. This description, in turn, was
transcribed by us from the ARMv7-M Architecture Reference Manual (ARM Ltd. 2014).

A simplified model of the emulator architecture we developed is shown in Fig. 3.3. The
code under test is compiled into an ELF binary first, and the relevant data is extracted
afterward using standard tools into a binary that could be written into the flash ROM

55

3 Timing Channels

Simulation core

Raw binary

ELF binary Decode

Dispatch

Emulate

Pipeline

Bus utilization

Cond. exec unit

Wait states

Figure 3.3: Model of our Thumb-2 emulator

of a microcontroller. This binary file is then fed to the simulation core together with
some metadata information. Such metadata could be a particular entry point or register
configuration to suspend and later resume emulated execution. When a single instruction
simulation step occurs, decoding and dispatching are performed by the simulation core
to the particular unit responsible for that opcode variant. Since the decoding stub knows
about specific data types and their respective encoding (e.g., immediate Thumb expansion
or sign extension as explained in the ARMv7-M Reference Manual (ARM Ltd. 2014))
the handler functions can work on the already decoded data and do not need to care
about specifics of their argument encoding.

That way, a particular decoded instruction is emulated while relying on a behavioral
model of the architecture in the background. A global state is held which takes into
account the aspects of the system previously described in Sect. 3.3, such as memory wait
states, bus utilization, pipeline fill and the state of the conditional execution unit of the
CPU. All this impacts the actual runtime of the operation within the execution and —
depending on the performed operation — possibly updates the internal state again to
reflect the changed state.

3.4 Evaluation

To build up confidence in the accuracy of our emulator, we checked regularly during
development that the model mimicked its physical counterpart carefully. The way in
which we used training code was explained previously in Sect. 3.3.2. In this section, we
highlight the tests we conducted against sophisticated, real-world software to find out
how closely our emulator can predict runtime in these non-artificial pieces of software.

3.4.1 Experimental Setup

For our tests, we first created a monolithic ELF binary which contained all algorithms
we wanted to test; these included public-domain variants of the AES and Camellia block
ciphers as well as a public domain SHA256 implementation. We also evaluated the official
Keccak-compact reference code in its version 3.2. Above those, some minor examples

56

3 Timing Channels

STM32F4

ELF Binary Testrunner

compile

nm

RS232 download

0x1234 test_sha(int len):
sha_init()
sha_update((void*)0x8000000, len)
sha_finalize()

0x3456 test_camellia(int keybits):
cam_key_schedule(keybits)
cam_encrypt()

0x5678 execute(void):
t0 = DWT->CYCCNT
program_buffer()
t1 = DWT->CYCCNT
print(t1 - t0)

push {r0, r4, lr}
movw r0, #0x80
movt r0, #0x0
movw r4, #(0x1234 + 1)
movt r4, #0x0
blx r4
pop {r0, r4, pc}

11b540f28000c0f20000
41f23524c0f20004a04711bd

program_buffer:
11b540f28000c0f20000
41f23524c0f20004a04711bd

Figure 3.4: Work flow in the experimental setup

(memcpy and sprintf) were also added which used the embedded C library (newlib in
our case). For all test code, small test stubs were written which invoked the respective
functions. For example, the SHA256 testing function does the initialization of a SHA256
context, updates the context with argument-defined data length (we used the internal
ROM as a data source in this case and just varied the length) and finalizes the context
afterward.

The main program then waits for commands on the RS232 interface, which was hooked
up to a host PC. One offered command was to store received data into an application
buffer, which was located in SRAM. Another command then invoked code execution of
this program buffer and timed its execution time using the hardware-provided facilities
described in Sect. 3.3, notably List. 3.3. This allowed us maximal flexibility because
we were able to execute arbitrary code and therefore have custom setup and tear down
trampolines without having to re-flash the microcontroller every time. Instead, we
compiled some code which called the functions we wanted to test on the host machine.
For this process, we wrote another Python program which scanned to ELF binary for
relevant entry symbols using nm, emitted Thumb-2 assembly code, compiled this code
and sent it to the microcontroller’s program buffer via RS232.

The whole process is illustrated in Fig. 3.4: At first, the monolithic ELF binary is
compiled and flashed onto the microcontroller. From the ELF, we extract the address of a
particular testing function which we would like to call using nm; in the shown case, this is

57

3 Timing Channels

Group name Description Examples

addsub Arithmetic addition and sub-
traction variants add, adc, sub, sbc, rsb

bcc Branch on condition code

any conditional branches as well
as compare-then-branch instructions
like the “compare branch if nonzero”
instruction cbnz

bitwise Bitwise operations and, bic, eor, orr, neg
ldr Family of load operations ldr, ldrb, ldrd, ldrsh, pop, ldmia
mov Family of move operations mov, movt, movs, movw
shift Bitwise shifting instructions lsl, lsr
str Family of load operations str, strb, strd, push, stmia

Table 3.1: Used instruction grouping

the test_sha function at address 0x1234. The trampoline stub is then generated which
initializes the first parameter to 0x80 (i.e., hash 128 bytes using SHA256). Afterward,
the register r4 is set to 0x1235 (the least significant bit is always set, indicating to the
processor that it is to use Thumb mode). Finally, a register indirect call is performed
which jumps into flash ROM. This code is compiled on the host and its binary stream
sent to STM32’s SRAM program buffer. Execution of this program buffer now times the
function (which is located in flash ROM) with the previously determined arguments.

By using empty testing functions stubs which merely returned, we could determine the
amount of time spent in setup and tear down of our trampoline function to later subtract
that amount of clock cycles from the measurements. This gave us the number of clock
cycles which depended solely on the test function. All code snippets by default ran 512
times on the actual hardware. Our testing program ensured that all timing results were
in agreement to avoid accidental mismeasurements.

3.4.2 Experimental Results

To verify the correct operation of our emulator, we performed tests using a variety of
functions, many of which were of cryptographic nature. Among those were encrypting
single blocks using the block ciphers AES128 and Camellia and hashing using the SHA256
and Keccak hash functions. Some other tests did non-cryptographic work; one example
performs a call to memcmp and yet another issues a sprintf call which prints a format
string of 24 bytes containing two integer substitutions (%d and %u).

The result of these tests is shown in Tab. 3.2. Dynamic instruction count (i.e., the real
number of instructions executed at runtime) is shown as well as the amount of clock
cycles on the real hardware and the predicted amount of clock cycles of the emulator.
The host, an Intel Core i7-5930K, took a worst case of about 300 clock cycles to emulate
one target clock cycle. There are, however, significant differences in speed depending on

58

3 Timing Channels

Clock cycles
Operation Insns. Native Predicted Diff. Emulator Ratio
memcmp-32 295 413 413 0 75 k 182
memcmp-100 907 1254 1254 0 227 k 181
AES128-16 8479 11634 11634 0 3.00 M 258
Camellia-128-16 1647 4469 4469 0 699 k 156
Camellia-192-16 2239 5962 5962 0 944 k 158
Camellia-256-16 2197 5892 5892 0 933 k 158
SHA-256-16 4091 5198 5198 0 1.53 M 294
SHA-256-32 4155 5299 5299 0 1.56 M 294
SHA-256-50 5227 5417 5417 0 1.59 M 294
Keccak-512-32 25866 40330 40326 4 8.19 M 203
Keccak-512-64 25938 40438 40430 8 8.22 M 203
Keccak-512-256 26370 41107 41075 32 8.37 M 204
sprintf 1088 2027 2010 17 367 k 181

Table 3.2: Measurements showing the dynamic instruction count (Insns.) and taken
clock cycles on the target and in the emulator. Block ciphers were used for
encryption, suffix denotes the payload in bytes.

Operation/Group AES-128 (16) SHA-256 (32) sprintf
addsub 1290 15.2% 999 24.1% 160 14.8%
b 144 1.7% 87 2.1% 28 2.6%
bcc 515 6.1% 227 5.5% 158 14.6%
bitwise 2116 25.0% 944 22.7% 15 1.4%
clz 1 0.1%
cmp 512 6.0% 218 5.2% 154 14.2%
it 298 3.5% 49 4.5%
ldr 1671 19.7% 579 13.9% 196 18.1%
mov 498 5.9% 833 20.1% 140 12.9%
shift 160 1.9% 43 1.0% 18 1.7%
str 535 6.3% 223 5.4% 152 14.0%
tbh 2 0.2%
tst 298 3.5% 1 0.1%
umull 8 0.7%
uxtb 442 5.2%

Table 3.3: Detailed dynamic instruction breakdown of tests with assembly instruction
grouping

59

3 Timing Channels

the type of code that is simulated. This can be explained mainly by code making use of
the barrel shifter, something that’s common in cryptographic computations and costly to
emulate in software.

For most cryptographic algorithms, our emulator correctly estimated the amount of taken
native clock cycles. This is unsurprising since accurate modeling of cryptographic code
was our primary objective, and hence we put the most emphasis on that problem. We did
not model instructions which are seldom used in cryptographic with complete accuracy.
In particular, the division instruction which is needed for the Keccak-call (which uses the
sdiv opcode) causes some slight discrepancies, and similar issues arise at the sprintf
example.

An estimate of how different the constitution of cryptographic and non-cryptographic
code can be is given in Tab. 3.3. In the AES128, SHA256 and sprintf examples we
mentioned above we counted 108 unique opcodes that were executed. This includes
different conditional variants of the same opcode after the occurrence of the Thumb-2 it
“if-then” opcode as well as opcodes in their wide and narrow form. To do meaningful
analysis with them, we grouped some of them into different categories as shown in
Tab. 3.1. It is immediately obvious that the sprintf example differs significantly and
uses instructions and code which is not required for cryptographic computations.

3.4.3 Semi-automatic vetting

To embed the emulator into a vetting process, we wrote a fuzzer using Python. A
necessary prerequisite for functions which shall be tested is that they are runnable
without any previous initialization right after a call to main(). If this is not possible, the
developer can additionally define initialization functions which are called before executing
the actual tests.

As can be seen in List. 3.5 the implementation of a fuzzing directive is done by imple-
menting the method of a class. The test case generates two random byte arrays of 16
bytes each. A call to the assert_crt then actually triggers the verification. In this
instance, memcmp is asserted to have constant runtime independent of the content of the
random byte arrays.

def tc_memcmp(self):
array1 = self.randbytes(16)
array2 = self.randbytes(16)
self.assert_crt("memcmp", array1.addr, array2.addr, 16)

Listing 3.5: Python fuzzer test case

To come to a conclusion whether the assertion is true or false, the framework first takes
the compiled ELF binary and simulates the code until main() is called. A snapshot of

60

3 Timing Channels

the memory and the CPU state is then generated as an optimization to be able to switch
back to this state later quickly on for subsequent trials. The random byte arrays are
generated at this point and mapped to a memory region which is otherwise unused by the
hardware as not to interfere with the normal runtime behavior. Then, memcmp is called
with the appropriate memory addresses. The cycle count of the runtime is recorded, and
the previous memory snapshot is restored. When the procedure is run again, it is verified
that the second cycle count is equal to the first one. An arbitrary number of runs can
be specified to get a reasonable amount of confidence that the probed function actually
exhibits constant runtime behavior. For the above example, a set of 1200 runs ensures
with a probability of at least 99% that the first byte in both random arrays was identical
at least once. It would be equally possible to hard-code this, however, in Python, but we
chose to keep the fuzzing example as simple as possible to illustrate our main point.
Integration of this Python fuzzer into the build process is trivial; in our case, we simply
added a .PHONY target called check into the Makefile which initiated the vetting
procedure. If this target is defined as a dependency of, for example, the programming
target, it can easily be assured that programming the microcontroller only then proceeds
once the internal checks have passed (since the build process would abort otherwise).
If a discrepancy in the tested code arises, the user can re-run the emulator with tracing
enabled. This gives a detailed breakdown at every executed instruction. It shows what
the elapsed cycle count is and what all register values are and therefore allows to locate
easily the sections which caused incorrect cycle count predictions.

3.5 Conclusion and Outlook

We have described theoretically and shown in practice that modern microcontrollers, such
as those of the ARM Cortex-M family, exhibit timing phenomena which closely resemble
behavior previously only seen on sophisticated desktop CPUs. In our explanations, it
becomes clear how difficult it is to predict these effects to the naked eye. While the
reasons for which these mechanisms have been incorporated into modern MCUs are
beneficial for performance, they can lead to the presence of timing side channels. We
explained how easy it is to exploit these tiny timing discrepancies by using mid-range
commercial-off-the-shelf equipment. The described attacks are realistic for attackers with
minimal hardware knowledge and physical access to the device.
To strengthen the defensive side, we have developed an emulator with the primary
objective of emulating code with clock cycle accuracy. We have demonstrated the
effectiveness of our approach and also describe the outline of a streamlined process that
improves the simulation model. With the help of this emulator, it is possible for a
software developer to regularly and semi-automatically probe code after each compilation
to achieve continuous quality monitoring during the development process. It only has to
be defined what results are expected from the function under test for the fuzzer to be
able to do its work properly. If for example, by an upgrade of the compiler, the timing
behavior changes in a critical manner, this can be detected at an early stage within the

61

3 Timing Channels

development life cycle; timing analysis can then selectively performed on real hardware
to confirm and pinpoint such irregularities.

Modern microcontrollers today are much more advanced than MCUs of previous genera-
tions. While this is a blessing, on one hand, these intricate performance boosters are
a curse at the same time, since they are a major contributing factor to the presence of
timing side channels. It is our hope that by accurately describing the effects present
in these systems as well as releasing the complete source code of our project, our work
contributes to both raising awareness and strengthening of mitigation strategies of timing
side channels on embedded systems.

62

Chapter 4

Covert Channels

Involuntary transmission of data is commonly referred to as leaking via a side channel. In
contrast, if malicious software or hardware deliberately uses certain hardware constraints
to transmit information, this is referred to as a covert channel.

In this chapter, we present a new class of intra-packet covert channels which can be
created on common hardware, but that cannot be detected by such. Our idea is to
abuse anti-EMI features of a microcontroller to create a covert channel on the physical
layer. Thus, the sender uses the invariants in how digital signals are encoded over
analog channels to covertly transport information. This leaked data is present on the
wire-bound connections of the compromised device, but is also by definition present
in the vicinity of the device and can be picked up by radio equipment. As the covert
channel is present only on the physical layer, the data on all layers above, as well as the
timing behavior on those layers is indistinguishable from uncompromised devices. We
present two example implementations of such channels using RS-232 as the carrier and
use a common oscilloscope to decode the resulting covert channel. Using this setup, we
observed symbol rates of around 5 baud. We derive the theoretical upper bound of the
covert channel’s bandwidth and discuss the factors by which it is influenced.

This chapter has been previously published in the proceedings of the International
Symposium on Hardware Oriented Security and Trust as a poster and short paper (Bauer
et al. 2016a); an extended version of the published paper was made available as a technical
report (Bauer et al. 2016b).

4.1 Introduction

On the lowest layer of the OSI model, data is transmitted over a physical medium like
a wire. To do this, the source data is encoded into physical parameters of the medium
such as voltages or currents and thus comprises a signal f(t). Any physical medium is
subject to noise which can be modeled as an additive component to f . This means that
the receiver does not receive the pure signal f(t) but rather f(t) + g(t) where g models
the noise. Tolerance to noise on the physical layer is achieved by certain tolerance levels
implemented by the interpretation function at the receiver. So, if D denotes the function
which translates the analog signal on the physical layer to code words on the data link
layer, this function satisfies the following equation for error-free transmission:

D(f(t) + g(t)) = D(f(t)) (4.1)

63

4 Covert Channels

As an example, consider the transmission of a single byte using RS-232. Note that we
selected RS-232 because the simplicity of the protocol allows for a precise presentation
of our core ideas. Protocols like USB, SPI or I2C would work equally well. In Fig. 4.1,
ten RS-232 symbols are transmitted on the physical wire: one start bit, 8 data bits, and
one stop bit. Since the bit order is least significant bit (LSB) first, in the example the
value 0xb1 is transmitted. Instead of letting involuntary noise g(t) act upon the signal
we could similarly specifically craft a function that would slightly change the signal in a
way that would not alter the outcome of the interpretation function D. Examples for
this could be marginally lower or higher voltages, slightly faster or slower transitions
between the Low and High states or a small phase shift of the signal. Two of these
examples are shown in Fig. 4.2. The signal is sampled at the indicated points in time.
Variations of the transition speed or signal phase do not matter as long as the signal

Time0

5

VIH

VIL

High

Low

Forbidden

1 0 0 0 1 1 0 10
Start

1
Stop

Vo
lta

ge
V

Figure 4.1: Exemplary RS-232 transmission of a single octet

Time
0

5

VIH

VIL

High

Low

Forbidden

0 1
Jitter Rise time

Vo
lta

ge
V

Figure 4.2: Signal changes of jitter/rise time that preserve the physical property

64

4 Covert Channels

has the correct value at its intended sampling point. This means that for a Low value,
the voltage must remain below the threshold VIL and for a High value, it must stay
above VIH. The interpretation D is guaranteed to remain identical and thus the physical
property is preserved.

We make the following observation in this chapter: If g(t) is misused to encode secret
information by slight variations in voltage or timing while ensuring that D(f(t) + g(t)) =
D(f(t)), then there is no easy way for the standard receiver to decode or even detect
this information. However, if g(t) can be measured by a specialized receiver with an
interpretation function D′ (such as an oscilloscope with custom recovery algorithms), it
is possible to extract the information while from a data link point of view, there is no
observable difference between the modified and unmodified signals. An attacker who
knows the exact signal deviations caused by the implanted covert channel could easily
build a specialized receiver with dedicated hardware. Such hardware could be an FPGA
development board for which the total hardware cost of the receiver would be somewhere
in the range of around $100.

4.1.1 Attacker Scenario: Covert Communication

Consider an attacker who wishes to access secrets covertly that are inserted into sensitive
security hardware (like a tamper-resistant key store) after it has been deployed. To
achieve his goal, the attacker acquires access to the supply chain between a silicon
manufacturer and the original equipment manufacturer (OEM), as illustrated in Fig. 4.3.
Within the supply chain, the attacker can intercept and modify the hardware and later
can get close to the hardware in the field to access the secrets without actually having
physical access to it.

Clearly, an attacker with physical access to a device has many possibilities to create
backdoors. We, however, assume that (1) the attacker can only physically access and
modify the device once, and (2) the modified devices are subject to intensive security
checks by the OEM before deployment. Therefore, covertness cannot be achieved by
classical hardware backdoors such as the approach by King et al. (2008) shows, and the
extraction of information from hardware by physical access Gruhn and Müller (2013)
and Halderman et al. (2009) is not an option. Note that such attack scenarios are
not uncommon in practice (Appelbaum, Horchert, and Stöcker 2013), and in common
end-of-line test bedding environment scenarios run by OEMs (such as a bed of nails test
fixture), the focus is only on the digital semantic correctness of the devices under test.
A covert channel in the way we describe in this chapter would pass such a digital test
effortlessly, even when probed for with more sophisticated methods like fuzzing.

We demonstrate that the logic that is necessary to perform such an attack is minimal —
in fact, many modern devices already have an abundance of possible circuitry on board
which would allow deployment of such a channel. To demonstrate that little hardware
modification is needed we show that the already present circuitry in off-the-shelf hardware

65

4 Covert Channels

silicon manufacturer

covert channel

benign, vendor
produced hardware

modification
during shipment

modified
hardware

intensive
vetting process
and storage of

secrets modified
hardware

with secrets

end
user

communication
medium

malicious
receiver

Figure 4.3: Example of supply chain poisoning

is completely sufficient to construct a covert channel with it by doing only modifications
of software (i.e., the firmware).

4.1.2 Abuse of Anti-EMI Features

In this chapter, we show that anti-EMI functionality can be misused to implement a
covert channel and want to raise awareness of such threats. Electromagnetic interference
(EMI) is an unwanted and inconvenient side effect which every electronic device exhibits.
Governmental regulations limit the maximum amount of emitted EMI, and so the signal
processing logic of many electronic devices contains suppressing techniques such as Spread
Spectrum Clocking (SSC) or Rise Time Control to reduce the EMI emission. Our idea is
to use such facilities as a covert communication medium. Both options are available on
standard microprocessors today and can be used by software to reduce radiated emission.
This allows us to create a covert channel with the following properties:

1. because it can be realized in software, sending information on the channel is easy and
can be performed with a wide range of commercial off-the-shelf hardware, and

2. receiving and decoding the information requires specialized measurement equipment
such as oscilloscopes or custom hardware. This renders the channel invisible to an
observer on the data link layer.

66

4 Covert Channels

4.1.3 Related Work

The notion of covert channels goes back to Lampson (1973) when he distinguished timing
channels and resource channels. Timing channels encode information in the inter-packet
timing delay, while resource channels use packet ordering or the state of a packet to
transport information. Later, Kemmerer (1983) generalized the notion to scenarios
with any form of shared resources. While the concept evolved in military contexts,
today, the threats of covert communication have reached the mainstream and various
implementations based on many communication methods, such as IP, exist as research
prototypes such as that of Giffin et al. (2003), Murdoch and Lewis (2005), and Rowland
(1997) and “in the wild” as demonstrated by Appelbaum, Horchert, and Stöcker (2013)
and Dietrich et al. (2011). While the specific encoding and methods for creating covert
channels were refined over the years, the actual implementation almost always focuses
on protocol layers at or above the data link layer. This is the case with the works of
Ji et al. (2009), Y. Liu et al. (2009), Murdoch (2007), and Wendzel and Keller (2012).
Consequently, defensive methods, i.e., attempts to detect a covert channel, as shown
by Cabuk, Brodley, and Shields (2004), Gianvecchio and H. Wang (2007), Moskowitz
and Kang (1994), and Zander, Armitage, and Branch (2007) usually assume a packet
abstraction such as the one provided by the Internet Protocol. In contrast, our work is
completely independent of such an abstraction.

Works that focuses on hardware Trojans, such as those of Farag, Lerner, and Patterson
(2012), Iakymchuk, Nikodem, and Kepa (2011), King et al. (2008), Shah and Blaze (2009),
and Tehranipoor and Koushanfar (2010), make use of physical properties of hardware or
communication on the data link layer to implement covert communication. They embed
malicious circuitry in FPGA targets and therefore augment the present hardware to
create backdoors. In contrast, our approach can be implemented using functionality that
is already present in MCUs and can often be achieved by only modifying the firmware.
Moreover, existing work is detectable by observing the digital behavior of the circuit.

Iakymchuk, Nikodem, and Kepa (2011) use heat dissipation to implement a covert channel;
their work can be regarded close to ours, but their proof of concept implementation also
requires hardware modification by altering the FPGA netlist. Shah and Blaze (2009)
use the physical properties of the transport medium to implement a covert channel and
encode covert information by selectively disrupting the physical carrier. Their attack,
however, requires special radio frequency equipment, i.e., specialized sending and receiving
hardware since a deliberate carrier disturbance is not possible with benign hardware.

Interesting observations are presented by Genkin, Pachmanov, Pipman, and Tromer
(2015); they analyzed low-cost methods of key recovery in systems which exhibit electro-
magnetic side channel emission by using a Software Defined Radio (SDR). Their recovery
approach could be applied to recovery of our EM covert channel as well.

67

4 Covert Channels

4.1.4 Contributions

In this chapter, which is the extended version of the presentation at HOST 2016 (Bauer
et al. 2016a), we make the following contributions:

• We introduce a new class of covert channels that uses sub-digital means to transport
information, i.e., it abuses the degrees of freedom in the representation of digital
signals on physical channels. In a sense, instead of looking at the inter-packet delay,
our covert channels modify timing properties within packets, i.e., we use intra-packet
timing channels. To the best of our knowledge, we are not aware of any other work
that formulates and demonstrates this idea.

• We argue that these channels pose a relevant threat by showing that they can be
implemented easily in software. We demonstrate this by using anti-EMI features that
are supported by many commercial off-the-shelf processors. Such channels have an
asymmetry property in that it is easy to send information over the channel but it
requires special hardware to decode the covertly transmitted information. This, in
turn, means that deliberate, targeted effort is required that specifically looks at aspects
of the signal to detect the presence of such a covert channel. Our proof-of-concept
example implementation demonstrates two different ways to encode information on
RS-232 as the carrier protocol.

Since we exploit sub-digital features, the attacker necessarily needs either physical
access to the compromised medium over which the information is sent or close physical
proximity to the device. This is because our covert channel by definition is present only
in the analog/digital encoding ambiguity and as a side effect in the form of parasitic
electromagnetic emission. A standard receiver or relay (for example a network switch
in the case of Ethernet) destroys the covert signal because it digitally interprets and
reconstructs passed on signals. This means an attacker has to deploy a decoding unit
somewhere within the network (for example by intercepting the wire) or use radio
frequency equipment in the vicinity of the compromised device. We argue that this is a
necessary downside of this new type of covert channel.

Note that for our example implementation we chose RS-232 for convenience only. Our
approach could likewise be applied to many other carrier protocols, including but not
limited to I2C, SPI, I2S or USB (Motorola, Inc. 2003; NXP Semiconductors N.V. 2014b;
Philips Semiconductors 1997). Even though RS-232 has largely disappeared from the
desktop computing environment, it is still widely used in embedded environments as a
means of chip-to-chip communication. The fact that the output driver configuration is
independent of the selected function of the MCUs port pin means that all peripheral
functions on that port pin are affected by our channel. Our second approach affects the
main system clock of the microcontroller (and because all peripheral clocks are derived
from that clock source) directly leads to the consequence that all output peripherals are
affected in the same manner as the RS-232 transport. This includes all peripherals that
are supported by the used MCU. An attacker only needs to be able to monitor at least

68

4 Covert Channels

one affected channel to recover the covertly transmitted data. That these properties are
independent of the used communication protocol makes our approach versatile.

4.1.5 Outline

This chapter is structured as follows: In Sect. 4.2, we discuss the signal theoretical
background information necessary to understand the used carrier signal and also describe
the anti-EMI mechanisms that modern microcontrollers employ. We continue by demon-
strating two concrete covert channels in Sects. 4.3.1 and 4.3.2 which we implement with
a Cortex-M4 microcontroller (STMicroelectronics N.V. 2011b). Sect. 4.4 gives a brief
overview of how the transmitted symbols are encoded in our case and elaborates on the
theoretic maximum channel capacity. Then we continue to explain how our channel can
be applied to a real-world scenario in Sect. 4.5. Finally, Sect. 4.6 gives a summary and
an outlook on what future work could be based on these methods.

4.2 Background

The way our physical layer covert channel works is closely entangled with the underlying
electrical foundation and signal theoretical background. We, therefore, give a brief primer
on electromagnetic interference and signal composition in Sect. 4.2.1 first. Afterward,
we highlight common countermeasures to limit this — usually unwanted — EMI in
Sect. 4.2.2.

4.2.1 Electromagnetic Interference

Digital square wave signals are composed of superimposed sine waves of different frequen-
cies and amplitudes. Any square wave signal can be decomposed into its components
using the Fourier transformation, as shown by Bracewell (1999). For a square wave with
n harmonics, i.e., n superimposed integer multiples of the fundamental frequency, the
signal amplitude at a point in time ϕ is given by

f(ϕ) =
n∑

i=0

1
2i+ 1 sin((2i+ 1)ϕ). (4.2)

Note that the second derivative of this function dϕ is

f ′′(ϕ) = −
n∑

i=0
(2i+ 1) sin((2i+ 1)ϕ). (4.3)

By solving f ′′ = 0, one can see that the function has an inflection point at ϕ = 0, which
yields f ′(0) = n + 1. This means, the maximum slope of the composed digital signal,
n+ 1, is directly related to the number of contained harmonics. Thus, an ideal square

69

4 Covert Channels

Si
gn

al
Le

ve
l

Time

10%

90%

tr

Figure 4.4: Illustrated rise time of a signal

wave signal has a positive edge slope of infinity and consequently contains an infinite
number of harmonics.

Real-world digital signals cannot change instantaneously, and the transit from the Low
to the High state or vice versa takes a certain amount of time. We refer to this time as
the rise time when a signal does a Low to High transition and fall time in the inverse
case. Since the following argumentation applies to both rise and fall times analogously,
we only discuss rise times in detail. By convention, the measured rise time begins when
the signal has reached 10% of its peak value and ends when it is at the 90% mark. This
is illustrated in Fig. 4.4.

The edge that constitutes the Low to High transition also has a certain slope, usually
measured in voltage per unit of time. A steeper slope intuitively corresponds to a shorter
rise time and vice versa. We refer to both interchangeably. The steeper the slope of a
digital signal is, the more harmonics are contained within the signal. Additionally, part of
the dissipated power of signals is emitted in the form of electromagnetic interference (EMI).
Intuitively spoken, this means that the device involuntarily acts as a radio transmitter.
This effect becomes especially significant at high frequencies. Any signal with steeper
slope only increases EMI though the presence of additional high-frequency harmonics
but does not benefit the actual data transmission.

4.2.2 EMI Countermeasures

As explained in Sect. 4.2.1, signal slopes ideally are only as steep as they need to be by
the application requirements. For example, if the data rate that an output driver uses is
relatively slow (for example Full Speed USB with 12 MBit/s), a steeper edge slope of
the signal does not make transmission of data any faster because the signal steepness
is not at all the limiting factor. Higher rise times do, however, add additional radiated
emission to the device. It is, therefore, advantageous to limit the slope of the signal to
the amount that is necessary by the constraints of the connected peripheral.

70

4 Covert Channels

10

100

1000

10000

100000

1e+06

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

FF
T

m
ag

ni
tu
de

Frequency (MHz)

Without SSC
With SSC

Regulatory requirement

Figure 4.5: FFT magnitude of a 5 MHz clock signal with and without Spread Spectrum
Clocking and exemplary regulatory permissible maximum regarding EMI

Apart from the actual rise time of the signal, two other factors influence the emission
spectrum of any device: One is the clock frequency which also directly affects the fre-
quencies and amplitudes of all contained harmonics. The other is the antenna efficiency
of the parasitic antenna that is constituted by the integrated circuit itself. Antenna
efficiency is highly nonlinear over the frequency spectrum. To reduce unwanted electro-
magnetic emission, one could theoretically change any of these factors. While changing
the characteristic of the parasitic antenna is not possible in software, changing the clock
frequency easily is. The main idea of spread spectrum clocking is, therefore, to vary the
clock frequency periodically to smear the emitted spectrum. Although this means that
the emitted energy (i.e., the integral of the power over the frequency spectrum) stays
nearly the same, spectral peaks which could cause trouble in an EMI examination can
easily be avoided, as Fig. 4.5 shows.

For spread spectrum clocking, two parameters influence how the clock frequency f changes
over time: The period at which a frequency is modulated is called P and the associated
modulation frequency is called fm. The amplitude of the modulation is referred to as
the modulation depth and is abbreviated with d. The example in Fig. 4.6 uses triangular
clock modulation.

Microcontroller manufacturers are aware of countermeasures to EMI issues and have
therefore equipped many of the newer, faster devices with the possibility to limit the rise

71

4 Covert Channels

and fall times of digital signals by use of special configuration registers (STMicroelectronics
N.V. 2011b). According to the needs of the application, the analog properties of the
signal can be modified within certain limits.

For implementing our covert channels, we chose a general-purpose microcontroller of the
ARM Cortex-M family, the STM32F407VG (ibid.). Chips within that family are priced
starting from $2 up to around $20, depending on the equipped amount of peripherals
they contain. The STM32F407 is approximately the middle of that price range. They are
built into a variety of embedded devices such as automotive ECUs (Electronic Control
Units), RFID readers and consumer appliances like wireless routers, printers or air
conditioners (Sadasivan 2006).

On the STM32F407, the rise time of GPIOs can be controlled in software by accessing
the registers in the GPIO I/O map. Even if memory protection would be enabled using
the MPU, in many scenarios at least some of these registers are accessible to unprivileged

f

f+d

f-d

P

d

Time

C
lo
ck

Fr
eq
ue

nc
y

0

1

Lo
gi
ca
ls

ig
na

lv
al
ue

Time

Clock Signal

Figure 4.6: Frequency of a spread-spectrum clock signal

72

4 Covert Channels

application software. Internally, the hardware implementation which allows control of
rise time in four different levels — as it is possible with the STM32F4 — only needs to
consist of two switchable parallel capacitors at the output driver. If both capacitors are
switched off (disconnected), the highest rise time is achieved. When both capacitors are
switched on, they act as low-pass filters on the signal and therefore lower the slew rate.

SSC is also implemented on the STM32F407VG in exactly the fashion we show in
Fig. 4.6; it is using triangular clock modulation. The MCU provides two main registers
which control how the internal phase-locked loop is affected by spread spectrum clocking.
These registers are the 15 bits wide INCSTEP and the 13 bits wide MODPER register. The
former affects the modulation depth d while the latter affects the modulation period
P . According to the absolute maximum ratings of the device, the modulation depth d
must remain in between 0.25 % ≤ d ≤ 2 % while the modulation period P must always
remain greater than 100µs. There are additional constraints, all of which are described
in Sect. 5.3.11 of (STMicroelectronics N.V. 2012). In our case, for a PLL input frequency
fPLL of 8 MHz and a PLL numerator value PLLN = 336, there are 163 values (1 to 163)
to vary the INCSTEP register in ways that are within the absolute maximum rating of
the device; d ranges from 0.25% to 1.49% in this case.

4.3 Implementation of the Covert Channel

The anti-EMI facilities that microcontrollers provide are usually configurable in software.
An application programmer must be able to decide how and when these mechanisms
are enabled since some may have a detrimental effect on the overall performance of the
system. For example, while a certain anti-EMI measure may improve electromagnetic
emission, it could also simultaneously have a negative effect on the sampling precision
of an analog-digital converter (ADC). Therefore, it makes sense to give the application
programmer the ability to turn the anti-EMI features on and off at will. This means
the chip itself is equipped with the functionality to influence directly how much EMI
is emitted at any point in time — a fact that we exploit in the following sections to
construct a covert channel.

4.3.1 Implementation using Spread Spectrum Clocking

We now show how to implement a covert channel using spread spectrum clocking (SSC).
While SSC can arguably be implemented in lots of ways, the devices we looked at (the
ST32F4xx family) provide means to modulate the clock with a triangle signal of up
to 10 kHz and a modulation depth d of 0.25% to a maximum of 2% (ibid.). Either
of both variables can be used to encode data. To achieve covertness, it is beneficial to
choose the parameters so that the resulting signals look like they have been affected by
naturally occurring clock jitter. For comparison, the STM32F4xx datasheet (ibid.) lists
a typical peak-to-peak period jitter of ±200ps which is always present while at 168 MHz

73

4 Covert Channels

a worst-case 2% SSC modulation depth corresponds to a period anomaly of only around
119ps.

In our experiments, we used both variants: modulating the SSC modulation depth on
one hand and modulating the modulation frequency on the other. We never changed
both variables at once, but always kept one of the two constant. Therefore, if modulation
depth was modulated, the modulation frequency was chosen to be fixed at 10 kHz. For
data transmission using a variable modulation frequency, the modulation depth was
constant at 0.25%.

One drawback of choosing the SSC unit on the ST32F4xx family is that each change
between states requires the internal phase-locked loop (PLL) to be shut off before the
CPU allows modification of the SSC registers (STMicroelectronics N.V. 2011b). This is
a comparatively lengthy procedure and takes approximately 170µs in our case. Shutting
down the PLL requires the system clock to be switched to a different clock source;
typically this is the much slower internal RC oscillator. This is an operation which would
appear suspicious to someone monitoring a continuous stream of output data with an
oscilloscope or similar measurement equipment.

The advantage of using SSC is that the covert information is encoded in what resembles
ordinary jitter. Here, d directly corresponds to the amplitude of artificially generated
jitter while fm corresponds to the rate at which the jitter amplitude changes.

Recovery was performed with an Agilent DSO-X 3014A oscilloscope. We triggered on a
rising edge of the carrier and dislocated the trigger point one bit length in time, effectively
showing the jitter which was artificially generated by the SSC. This data was transmitted
to a PC using the USBTMC (USB Test and Measurement Class) protocol. The achieved
covert symbol rate was about 2 baud using constant 10 kHz modulation frequency and
three distinct modulation depths (i.e., three distinct symbols).

The limiting factor for this type of covert channel is the long fixed time which is necessary
by hardware constraints to switch from one state to another. For each such change, the
PLL has to be stopped and restarted, which takes a fixed amount of time. Therefore, to
covertly use the SSC unit for information transmission, the transmission speed (i.e., the
number of state changes per unit of time) would have to be exceptionally low so that the
time for the state change itself becomes negligible.

4.3.2 Implementation using Rise Time Control

We now show how to implement a covert channel using a completely different method
than SSC, namely the rise time control of the microcontroller unit (MCU).

The STM32F407VG which we used provides a facility to modify the output speed of the
general purpose input/output (GPIO) pins in four different speed categories: 2 MHz,
25 MHz, 50 MHz and 100 MHz. Of those four, the measured average rise times were 19ns,
4.3ns, 2.4ns and 2ns at Vcc = 3.3V. While three of these (19ns, 4.3ns, 2ns) are trivially

74

4 Covert Channels

0

0.5

1

1.5

2

2.5

3

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si
gn

al
le
ve
l(

V
)

Time (ns)

50 MHz 100 MHz 10% 90%

Figure 4.7: Signal differences of 50 MHz and 100 MHz drivers

distinguishable from each other, we wanted to stress covertness of our channel. This is
why we chose to select only the 2.4ns and 2ns alternatives even though discriminating
those options is technically most challenging.

Note that the selection of output driver speed does not affect the transmitted overt bit
rate in any way; it only affects the slew rate of the signal and therefore the theoretically
maximally achievable bandwidth using that output driver. For example, Full Speed USB
uses a 12 MBit/s data channel. For this type of communication either one of the 25, 50 or
100 MHz drivers could be used with no observable difference in the overt communication.
A plot that highlights the subtle differences in rise time is shown in Fig. 4.7. It was
captured using a Tektronix MSO4034.

This channel has the advantage that state changes are exceptionally fast in software
and that access to the required GPIO registers is usually allowed even to unprivileged
software. That is, even when the chip’s MPU is used, access to the relevant memory
regions is usually permitted even to user space applications. Since the difference between
the two fastest output driver states is marginal, the channel also exhibits an outstanding
covertness property. Furthermore, it is versatile in the sense that it can apply to any
output which does not require more than 50 MHz of signal bandwidth; such output
peripherals could, for example, be USB, I2C, SPI, or many others.

4.4 Data Encoding

Depending on the number of discrete states that a receiver can discriminate, an appropriate
encoding can be chosen for transmission of data. Concretely, we used a ternary encoding

75

4 Covert Channels

Time

En
co
di
ng

+1

0

-1
0 0 1 1 1 1 10 0 0

Figure 4.8: Ternary encoding of data bits with varying data clock rate

for the SSC variant described in Sect. 4.3.1 and a binary encoding for the rise time
approach of Sect. 4.3.2. Note that the choice of encoding is orthogonal to the type of
channel (i.e., SSC channel or rise time channel) itself.

The ternary variant allows for trivial clock recovery: With symbols −1, 0,+1, data bits
are encoded by the transitions between the idle state 0 to and from either the −1 or +1
state. We furthermore require that only the transitions −1↔ 0 and +1↔ 0 are valid
and all other symbol transitions constitute an invalid encoding.

Fig. 4.8 shows how this encoding looks in practice. Clock recovery is trivial: the only
restriction is that the frequency of transmitted bits may not exceed the Nyquist frequency
of the recovery unit’s sampling rate—in other words, all three symbols must at least
appear long enough to be reliably detected, but they can appear arbitrarily longer.

When using binary encoding, the clock recovery of the demodulated covert channel
is more complex than with a ternary approach. This is because the actual data that
is transmitted is intermixed with the data clock, i.e., the information at which point
in time the data is valid. We relax the difficulty by assuming that the malicious
code within the system is called at constant intervals, providing at least clock stability
(yet at an unknown frequency) and that transmitted data is random. This is not an
unreasonable assumption because leaked data usually is cryptographic material. Even
with completely random data, however, there is often significant disparity within the
signal which complicates clock recovery. To avoid this, a bit stuffing technique like 8B10B
encoding introduced by Widmer and Franaszek (1983) could be used to keep signal
disparity to a minimum. Alternatively, we could use whitening of the signal using an
LFSR-based synchronous additive scrambler. The associated cost would in both cases be
a significantly increased malicious code size, which is why we did not explore this further
and assume that our transmission signal is already without relevant bit-bias. Randomly
generated cryptographic keys should, in practice, exhibit no such bit-bias. An example
of the actual measurement data that we did this type of clock recovery on can be seen in

76

4 Covert Channels

SSC Rise time
Symbol Count (n) 3 2
Switch Time (t) 170 µs 120 ns
Overt symbol rate (bo) 10 kBd 115.2 kBd
Covert symbol rate (bc) 10 kBd 75.9 kBd

Table 4.1: Examples of channel parameters for our case

Fig. 4.9.

In summary, with these encodings, we achieved recovery speeds of about 1 bit/sec for
the SSC variant (symbol rate of 2 baud, ternary encoding) and about 2.5 bit/sec for the
GPIO variant (symbol rate of 5 symbols/sec, binary encoding).

4.4.1 Channel Capacity

After measuring the actual transmission speeds of our implementation, we now investigate
the theoretically achievable maximum channel capacity. To calculate this, three main
variables have to be taken into account:

1. Time it takes to switch between one output symbol to another (t)

2. Number of distinct, unique covert output symbols (n)

3. Effective baud rate bc in dependence on the overt channel baud rate bo

The two channels that we demonstrate experimentally in Sects. 4.3.1 and 4.3.2 use Spread
Spectrum Clocking (SSC) on one hand and rise time encoding on the other hand as the
covert transport. In the SSC example, we modulated the modulation depth d to create
the channel. For the channels that we create, an overview of the values of these constants
is shown in Tab. 4.1. The symbol switch time t is significantly greater in the SSC variant
compared to the rise time variant due to the necessity of stopping the phase locked loop
(PLL) to change the SSC registers of the ST32F407, as already explained in Sect. 4.3.1.
It has also been explained there that the covert symbol rate depends not only on the
overt symbol rate but also on the transmitted data. For our examples, we transmitted
alphanumeric protocol data which gave us the shown values for bc.

The reason why there is data dependence of bc on bo can be intuitively explained by
the fact that the number of edges within the signal — and therefore the number of
possibilities to inject covert data — depends on the data. For a worst-case word of 0x00
the number of symbols is minimal (two edges per byte of data) while for a constant
stream of 0x55, it is maximal (10 edges per byte of data). The plain text we transmitted
had on average 6.6 edges per transmitted byte of data.

77

4 Covert Channels

2
2.05
2.1
2.15
2.2
2.25
2.3
2.35
2.4
2.45
2.5

120 140 160 180 200 220 240

Si
gn

al
ris

e
tim

e
(n
s)

Time (s)

Rise time Interpretation

Figure 4.9: Rise time over time and the conditioned signal

For our calculations and to get a theoretical upper bound, we assume the best case of
having at least one edge change per carrier symbol transmission. We then can derive the
maximum channel capacity symbol rate as

B = log2 n

t+ b−1
c

We provide an exemplary calculation for the parameters chosen in our actual experiments,
and we give an estimate for the theoretical maximum capacity in Tab. 4.2. In the
experiments we send alphanumeric data over the RS-232 overt channel with an average
of approximately 6.6 edges per transmitted byte, accounting for the lower bc. For easy
discriminability, we also limited the number of used symbols n significantly from the
theoretical maximum.

SSC Rise Time
Variable Experiment Theory Experiment Theory
n 3 193 2 4
t 170 µs 170 µs 120 ns 120 ns
bc 10 kBd 10 kBd 75.9 kBd 115.2 kBd
B 5.9 kBd 28.1 kBd 75.2 kBd 227.3 kBd

Table 4.2: Theoretically achievable B under ideal conditions compared to conducted
experimental evaluation

78

4 Covert Channels

For our channel, the maximum bc would be equal to bo, i.e., 115.2 kBd, and we have four
discrete symbols available. Therefore, we could achieve B = 227.3kBd. At first glance, it
is counter-intuitive that the covert channel capacity could ever exceed the overt channel
capacity. This has several reasons:

1. The symbol count of the covert channel can exceed those of the overt channel.

2. When the covert symbol rate depends on the transmitted data, we assume the best-
case values. In our example, this means that a constant overt data stream of 0x55
would need to be sent—something that does not make sense in the real world.

3. Any computational power that is needed to control the covert channel is neglected.

In conclusion, while the constructed covert channel might theoretically have a large
bandwidth, there are many practical aspects which decrease the practically achievable
bandwidth by about five to six degrees of magnitude. Data that an attacker would
want to leak through such a channel is in all likelihood cryptographic material that is
exceptionally short. Therefore, the drawback of limited practical channel capacity is
outweighed by the advantage that the channel itself is difficult to detect.

For our experiments, the factor that by far dominated the achieved covert bandwidth was
not the transmitter, but the receiver. Since we relied on general-purpose equipment, the
recovery bottleneck was the USBTMC transmission of the results to the decoding PC.

4.5 Practical Example

We now elaborate in depth on how an attack as motivated in Sect. 4.1.1 could look like
and how it could be applied in a real-world example. As we stated before, our type of
covert channel can be applied to every scenario where the output can be modulated in
ways that are invariant for the digital interpretation function. The channels we talked
about in-depth previously were wire-bound channels which misused the ability to influence
involuntary electromagnetic emission.

Our idea can be explored further, however. In the realm of analog circuitry, it is
quite common that fine-tuning of antenna circuits is done in software. For vendors of
radio frequency equipment, this is rather convenient, since it enables them to fine-tune
antennas to their circuits using a completely automatic process where the alternative
would otherwise be the manual tuning of hardware components such as variable capacitors.
Coincidentally, these framework conditions create precisely such an opportunity for the
construction of a sub-digital covert channel as we have shown before. The only difference,
in this case, is that the modulation is not performed via slight variations in rise time or
signal phase but in the modulation of the radio frequency amplitude which is emitted
via an antenna.

Consider a Radio Frequency Identification (RFID) reader that controls a door lock. Users
get special RFID tokens which they can hold in front of the RFID reader. The reader

79

4 Covert Channels

performs a cryptographically secured handshake with the token and, upon successful
verification that the token is legitimate, opens the door. Such RFID readers are manufac-
tured by many companies, and they all usually provide the functionality that a user can
set and store their cryptographic keys on the device. This is to ensure that the owner
of the locking system is the only one who knows the keys and can issue new, genuine,
tokens. We show that a vendor might have equipped such a product with a backdoor
that allows gaining access to the system in an almost undetectable fashion by utilizing
covert channels as described.

USB

SPI I2C

Cryptographic
Coprocessor

NFC
RF Frontend

Main MCU
SoC

Figure 4.10: Notional RFID reader with its components

Consider such a notional RFID reader and its basic design which is shown in Fig. 4.10. The
board consists of the main processor (SoC) that is connected to various peripherals using
different buses. One is a cryptographic coprocessor which contains master secrets that are
written into the chip as part of the commissioning of the reader board. Communication
between the cryptographic coprocessor and SoC is encrypted and authenticated over a
Serial Peripheral Interface (SPI). To communicate with near-field communication (NFC)
tokens, a standard RF front-end IC is used that connects to the antenna. Successful
authentication requests on the NFC interface are propagated over USB to an external
lock control unit.

In such a system, multiple sub-digital covert channels could be existent: The most obvious
one is a covert channel on the SPI. If the chip manufacturer embedded a sub-digital
covert channel in the cryptographic coprocessor, then the coprocessor itself could be
sending out its master secret periodically on the SPI, for example by using rise time
modulation as we described before. These secrets are sufficiently short (256 bits) such
that transmission can be extremely slow (in the range of 1 bit per minute to prevent
detection) and still would allow an attacker to perform relatively fast recovery of the
secrets (in around 4.5 hours). From an attacker’s point of view, this channel is hard to

80

4 Covert Channels

exploit because it requires either physical access or high-end radio equipment.

If the firmware of the SoC itself were to be compromised, then multiple covert channels
could be constructed. Again, the most obvious one is an onboard channel over any of the
three connected interfaces. The manufacturer of the RFID reader would be able to steal
keys of units in the field that have been parameterized by customers, but again physical
access to the hardware itself or sophisticated equipment would be necessary.

The most interesting channel, however, is the one we hinted at in the introduction of this
section: Usually, RF front-end ICs allow software tuning of antennas to compensate for
small physical differences that occur during antenna manufacturing (NXP Semiconductors
N.V. 2014a). During the production of the system, the antenna is connected to the
RF front-end IC and software calibration is performed to achieve impedance matching
between both components and therefore maximize field strength. This means that it
is possible to attenuate the RF signal deliberately in software by introducing slight
impedance mismatches and effectively modulate the field in a user-customizable fashion.
Such a channel could leak keys that are required for successful authentication over the
RF interface. An attacker who would have implanted this channel into an RFID reader
would need little effort to perform channel data recovery.

An attacker who knows that the RFID reader is compromised could analyze the modulated
RF stream externally using special receiving equipment (an oscilloscope would be sufficient
for regular 13.56 MHz HF-RFID communication) and learn the keys that are required to
authenticate against the reader, effectively creating a backdoor.

All these channels have in common that they are sub-digital in the sense that during
test and auditing the equipment which is used cannot detect the presence of the covert
channel because it is not part of the digital representation. Concretely, when using a
logic analyzer to look at the transmitted bits, there is no visible difference between a
system that is backdoored and one that is not, precisely because the channel itself is only
present in the gray area of the encoding ambiguity of the analog interpretation of digital
signals. Similarly, the covert channel in the RF case does not survive demodulation
because the physical differences that constitute the covert signal are so small that the
demodulator is indifferent towards them.

4.6 Conclusion

We have demonstrated the existence and feasibility of intra-packet physical layer covert
channels. We implemented such channels on commodity hardware by abusing already
present anti-EMI facilities. Concretely, we transmitted data via the Spread Spectrum
Clocking unit and also showed that the approach works by modulating the rise time of
an arbitrary output pin. Thus, we have demonstrated the practical feasibility of such
attacks and by evaluating the channel capacity on real hardware, we have shown that
transmission bandwidth is still high enough to be a relevant threat because it could be
used to leak cryptographic material.

81

4 Covert Channels

These channels by definition exist on any device which allows control over electromagnetic
emission countermeasure facilities. Since the speed of microcontrollers has increased
significantly in the last years, the necessity for the presence of such EMI countermeasure
facilities has equally risen. Such countermeasure facilities are therefore already present
in a wide variety of device by default as of today.

Something we wish to highlight is that data exfiltration is not merely limited to wire-
bound tapping like we showed in our examples. It would be practical for a real-world
attacker with more sophisticated equipment (such as a high-end spectrum analyzer) to
pick up the covertly transmitted data remotely. Our rationale why this is possible is
as plausible as it is catchy: The only reason these EMI-countermeasure facilities are
present in modern microcontrollers in the first place is because they cause an externally
observable difference in radio frequency electromagnetic emission. It is the prerequisite
for them to be effective. This means in turn that any EMI-manipulation regardless of
its physical carrier simultaneously causes subtle differences in the power levels within
the EM spectrum. So even when wire-bound protocols are affected primarily, it is our
estimate that remote, wireless data exfiltration is well within the arsenal available to a
sophisticated attacker.

In future work, we wish to explore the possibility of purely wireless data exfiltration
further. Another goal is to narrow the gap between the channel capacity we were able
to achieve and the maximally achievable channel capacity by using more sophisticated
equipment. This can be done by using special-purpose equipment such as an FPGA
board in contrast to general-purpose equipment like an oscilloscope.

Furthermore, while we focused on wire-bound physical layer covert channels, wireless
equivalents should warrant further research.

Finally, we have shown that for security auditing, it is insufficient to only examine the
inter-packet timing characteristic and transmitted data on the data link layer. To detect
physical layer covert channels, one has to dig deeper and take a look into the analog
realm and intra-packet timing. The fact that such channels can be constructed easily
and cheaply with off-the-shelf hardware means that they are even simpler to incorporate
in custom hardware.

Because of their asymmetry property, they are invisible to standard receivers and therefore
easy to miss. Since they pose a threat to confidentiality and system integrity, we hope
that our work encourages further research in that area to reveal where such channels
might already exist in today’s real-world systems.

82

Chapter 5

Hardware Trust Anchors

Communication of resource-constrained nodes with backend servers is common in today’s
infrastructure. In marketing terms, these minimalist embedded devices are often described
as smart systems. Such embedded nodes can be temperature sensors or actors such
as heating regulators which communicate wirelessly. In the field of the smart grid,
similar nodes are present at energy producers (e.g., wind turbines or solar collectors) or
consumers (e.g., storage power stations). When all of these nodes communicate over the
Internet, a well thought-out security foundation is imperative.

Traditionally in embedded system design custom protocols and ciphers have been used
because cryptography was dictated by the resource limitations of the nodes themselves.
As the nodes become more powerful regarding their computational capabilities, it is now
possible to employ strong cryptography even in such constrained systems. With the use
of well-designed cryptographic protocols such as Transport Layer Security (TLS) — even
in small device nodes — attacks on the actual cryptography become difficult to the point
of computational infeasibility. The focus of attackers, therefore, shifts to physical attacks
to gain access to secret information.

In Chap. 2 we described how power analysis could be made more difficult by masking
power emission using software techniques. While this is a valid approach and makes
power analysis in practice significantly more difficult for an attacker, the drawback is
that it defends only against non-invasive, passive attacks. There is nothing that can be
done in software against invasive attacks such as physically opening the chip — a process
called decapping — and directly connecting internal control lines with techniques such
as microprobing. Depending on the required security level of the application it might,
therefore, be advisable to incorporate a hardware trust anchor into the design of an
embedded system to protect it against counterfeiting and the extraction of cryptographic
material.

The level of protection with hardware security modules (HSMs) is higher than that of
a general purpose microcontroller because the vendors have designed their hardware
specifically to resist these types of attack. Generally, the special security ICs detect
tampering and destroy any content upon detection of a physical attack. Additionally,
during the chip design, obfuscation on hardware level is used to make it more difficult
for an attacker to understand the working principle of the HSM, even when she opens up
the IC package. Many high-security ICs also protect against passive attacks like DPA
using appropriate hardware countermeasures.

While it sounds like HSMs would solve most security-related issues, this is unfortunately

83

5 Hardware Trust Anchors

not true: In many scenarios, a protocol is given and needs to be implemented according to
its specification. Therefore, smooth integration would require the interfaces of a specific
HSM and the protocol’s cryptographic algorithms to align. This is seldom the case;
nearly all of third-party high-security ICs have proprietary interfaces. Therefore, the idea
of incorporating HSMs into pre-existing infrastructure is often discarded early on because
of the associated incompatibilities. It also is often not a viable solution to strongly couple
cryptographic protocol design to a proprietary interface of a specific HSM. Since usually
no second source for these custom chips is available, this would mean complete vendor
lock-in and is something that is generally best avoided in the design of an embedded
system.
In this chapter, we demonstrate one approach to integrating low-cost hardware security
modules into pre-existing infrastructure. To this end, we chose the protocol constraints
given by the Open Mobile Alliance Lightweight M2M protocol (OMA LWM2M) and use
the interfaces of different chips of the Atmel HSM family.
An excerpt of the work of this chapter has been previously published as an extended
abstract at DACH 2015 (Bauer and Freiling 2015).

5.1 Introduction

The Internet of Things (IoT) has picked up a tremendous pace in the last few years. With
these added communication nodes and their pervasiveness, they become attractive targets
to an attacker. Therefore, from a defensive side, the security requirements of these deeply
embedded systems rise as well. Unique identification and authentication are considered
state-of-the-art. This allows access revocation of nodes which are known to have been
compromised, for example, in the way Fan, Haines, and Kulkarni (2014) demonstrate.
Many of the popular protocols for machine-to-machine communication are in the dilemma
that they need to perform well on low-cost resource-constraint embedded systems but
nevertheless provide an adequate security level for the device. They still, therefore, rely
heavily on symmetric cryptographic primitives because symmetric algorithms perform
reasonably well on low-cost systems-on-chip (SoC). Brachmann et al. (2012) underline
the importance of proper end-to-end encryption and take a look at the specific problems
in respect to integration of resource-constrained clients in such networks.
For the security of secret key cryptosystems, the deciding factor for its security is whether
or not the symmetric key can be kept secret from an attacker. Inherently to the system,
this key needs to be present on both the client and server which want to perform
communication. Since it needs to be shared before the first communication occurs, it is
also referred to a pre-shared key or PSK for short. While it is relatively easy to store
this PSK securely on the server backend, on the client side it often simply resides on
the microcontroller’s flash ROM. Thus, the main risk is that an attacker could extract
this key either by passive methods such as power analysis or maybe even by invasive
attacks such as physically opening the chip package (decapping of the IC). Both kinds
are approaches within the capabilities of a skilled attacker (Skorobogatov 2004). This

84

5 Hardware Trust Anchors

makes it all the more surprising that current work on secret storage of such pre-shared
secrets, such as that of Bagci et al. (2012), explicitly excludes physical attacks in the
attacker model.

Defending against physical attacks is nothing new, however. On the contrary, there
exist numerous approaches which are used by silicon manufacturers to improve the
resilience of specific hardware security modules (HSM; Mangard 2004). Among the
features typically found in devices which have been hardened are tamper detection
mechanisms such as light sensors or trip wire meshes. They are supposed to detect if the
chip package has been physically opened and destroy all secret content upon detection of
tampering. High-security integrated circuits are additionally protected against passive
attacks like power analysis by using specific countermeasures which aim to hamper or
prevent attackers (Bucci et al. 2004; Ravi, Raghunathan, and Chakradhar 2004).

While the use of such HSMs is encouraged for hardening against physical attacks, for
example by Babar et al. (2011), often concrete and cost-efficient practical implementation
hints are missing. Recently, however, low-cost commercial-off-the-shelf HSMs have become
available. These HSMs are suitable for integration with resource-constrained embedded
systems. One example of such a device is the Atmel ATSHA204A with a cost of around
$0.50 per unit. The caveat, however, is that these HSMs usually provide proprietary
interfaces which complicate integration into pre-existing, standardized protocols like TLS.

This chapter describes an efficient and generic approach how such an HSM can be
integrated into the popular, state-of-the-art TLS protocol. We show the integration
of the symmetric HSM Atmel ATSHA204A (Atmel Inc. 2015b) into the handshake of
TLS-PSK and also describe how the asymmetric HSM Atmel ATECC508A (Atmel Inc.
2015a) can be used for integration of TLS with key exchange on elliptic curve basis.

With our contribution, the security model of Bagci et al. (2012) can therefore easily be
augmented also explicitly to include physical attacks into the attacker model.

5.1.1 Related Work

The field of machine to machine communication is currently in rapid motion. Fan, Haines,
and Kulkarni (2014) give a good overview of current approaches from a perspective that
takes industrial requirements into account.

There is also some disagreement if standard cryptography is the best choice for re-
source limited systems such as the embedded nodes that M2M communication focuses
on. Ukil, Bandyopadhyay, Bhattacharyya, and Pal (2013) and Ukil, Bandyopadhyay,
Bhattacharyya, Pal, and Bose (2014) propose a different approach to authentication
using a custom cryptographic protocol. They have used their custom security protocol for
vehicle tracking, and they propose using it for a communication network of distributed
nodes as well. Note that their cryptographic construction has not yet seen public scrutiny
and not been cryptanalyzed (Ukil, Bandyopadhyay, Bhattacharyya, Pal, and Bose 2014).
While Ukil, Bandyopadhyay, Bhattacharyya, and Pal (2013) and Ukil, Bandyopadhyay,

85

5 Hardware Trust Anchors

Bhattacharyya, Pal, and Bose (2014) exclude hardware tampering attacks, this is one of
the topics that we do address by the inclusion of hardware trust anchors.

Like others in the field of machine-to-machine communication, Raza, Shafagh, et al.
(2013) also use the Constrained Application Protocol (CoAP) for the transport of data.
As a security layer, they use DTLS. To fulfill the common requirement of having little
overhead by the security layer, they demonstrate how header compression can make
CoAP over DTLS more efficient (Raza, Trabalza, and Voigt 2012).

Bagci et al. (2012) take a look at how data can be stored securely by distributed
decentralized nodes. They evaluate confidential data storage for wireless sensor networks.
Their data storage system also relies on the fact that the system is not analyzed invasively
by hardware attacks.

While it is uncommon in the field of sensor networks to contemplate physical attacks on
the device nodes to extract cryptographic material, in the field of smart card research this
topic got much attention. Messerges, Dabbish, and Sloan (2002) studied how well smart
cards, of which should be expected that they provide some level of resilience against
physical attacks, behaved when threatened by power analysis.

Constructively, Moore et al. (2002) describe an option to improve the security of smart
cards by using self-timed circuits. Their design allows some means of timekeeping even
though a typical smart card does not contain a power supply and can, therefore, not
have a clock running when independent of its host.

Herbst, E. Oswald, and Mangard (2006) present a specific smart card implementation
which offers resistance against power analysis attacks. Their approach studies 8-bit smart
cards and they use masking and randomization of operations to achieve resistance against
higher-order DPA attacks.

However, with increasing defensive mechanisms, the offensive side also equally gains
momentum: E. Oswald et al. (2006) describe higher-order DPA attacks against masked
block cipher constructions. They demonstrate their approach to be feasible by attacking
an AES smart card.

5.1.2 Contributions

In this chapter, we describe the concrete integration of a real-world hardware trust
anchors into the datagram TLS protocol. The distinguishing features of our approach
are as follows:

1. We incorporate the cryptographic computation of a hardware trust anchor into the
handshake of TLS. In particular, we do this without the need to modify the TLS
protocol itself in an incompatible manner. This means that we consolidate two
interfaces: the software API of TLS on one side and the hardware API which was
given on the trust anchor side — neither of which are easily changeable.

86

5 Hardware Trust Anchors

2. We generalize on types of hardware security modules and show how similar integration
can succeed even with modules which offer different internal cryptographic primitives.

We furthermore analyze the cryptographic constructions which we used in-depth and
calculate the security margin that the devices offer.

5.1.3 Outline

The remainder of this chapter is structured as follows: First, we give an overview of
the technical background in Sect. 5.2. For this purpose, we first explain the details
of the transport layer security (TLS) protocol in Sect. 5.2.1. Afterward, we highlight
the peculiarities of TLS when used with pre-shared keys in Sect. 5.2.2. To understand
the usage of asymmetric primitives in conjunction with TLS, a primer of elliptic curve
cryptography is given in Sect. 5.2.3. Afterward, we give a concrete example that showcases
our idea; namely, the Lightweight M2M protocol and its security layer are introduced in
Sect. 5.2.4. After this background, we focus on our main idea and show how to implement
a secure key exchange using hardware security modules which only can use symmetric
cryptography in Sect. 5.3. How more sophisticated hardware security modules, which
rely on asymmetric cryptography, can be incorporated into the TLS handshake is shown
in Sect. 5.4. An in-depth evaluation of the used security primitives in afterward given in
Sect. 5.5 and we conclude with our final remarks in Sect. 5.6.

5.2 Background

Since we show incorporation of hardware security layers into the TLS handshake, the
TLS protocol is now explained in detail. The necessary background of asymmetric elliptic
curve cryptography is also provided along with the basic security constraints that are
present in the Open Mobile Alliance Lightweight Machine-to-Machine protocol (OMA
LWM2M).

5.2.1 Transport Layer Security

Transport Layer Security (TLS) is the de-facto standard protocol for transport encryption
on the Internet. It has seen extensive peer-review and is regarded as state-of-the-art
regarding its security. One limitation of TLS is that it requires a reliable connection such
as TCP/IP (Dierks and Rescorla 2008). To use TLS over a connection in which packets
may arrive in wrong order or get lost entirely, an adaption called datagram TLS (DTLS)
was created (Rescorla and Modadugu 2006). For systems with minimal networking
capabilities, this is convenient because it follows that no heavy-weight TCP/IP stack
needs to be present on these systems, and instead the much simpler UDP/IP protocol
can be used instead.

87

5 Hardware Trust Anchors

Since the computational power in modern microcontrollers has been steadily increasing
over the last years, more applications switch from minimalist proprietary cryptographic
constructions to a standard like DTLS. Security-wise this is beneficial because TLS stacks
are readily available and, when correctly implemented, can be regarded as state-of-the-art
without having to do security reviews on a per-case basis. TLS has varying degrees
of freedom in the way in which it can be used, ranging from variants which only use
little resources to complex integration with systems such as Kerberos. It offers plenty of
cryptographic algorithms for encryption and authentication of data as well as for key
exchange and key authentication.

As a standard notation, all relevant algorithms for a particular TLS session are con-
catenated together to form a text string which is called the cipher suite. A cipher
suite typically includes the key agreement algorithm, the bulk encryption algorithm and
pseudo-random function which is used. Not all cipher suites provide the same level of
security; some cipher suites do provide forward secrecy while others do not, for example.
Some bulk encryption algorithms are weak (for example DES or RC4) while others are
strong (for example AES256). It is up to the developer to decide what level of security is
acceptable and which cipher suites have a reasonably good performance for that required
level of security.

During the TLS handshake, the client sends a list of all cipher suites it is willing to
negotiate a connection with to the server. The server chooses one out of this list and
determines which cipher suite is going to be used for the connection. If no agreeable
cipher suites are found between client and server, the connection fails and is terminated.
If the handshake is complete, all communication in that session is protected by encryption
and authenticated using symmetric cryptography. This means an attacker can neither
eavesdrop on exchanged data nor can she modify any traffic of a TLS session.

The standard mode in which TLS is used in the infrastructure of the Internet today is
by using asymmetric cryptography based on X.509 certificates. Usually, only the server
provides a certificate to the client. Then the client and server perform a key agreement
algorithm such as Elliptic Curve Diffie-Hellman (ECDH) to derive the symmetric session
keys. The drawback of such a key exchange is that it is relatively heavy-weight both
regarding necessary communication and also regarding computational resources required
to perform the key agreement. While the algorithms that are used once a session
is established are comparatively lightweight, an initial handshake using asymmetric
cryptography is therefore often not efficiently possible on small embedded systems.
Fortunately, TLS offers the option to use exclusively symmetric cryptographic primitives
in its pre-shared key modes.

5.2.2 TLS with Pre-shared Keys

The pre-shared key (PSK) cipher suites have been added to the Transport Layer Security
(TLS) protocol in 2005 by RFC 4279 (Eronen and Tschofenig 2005). As the name
suggests these cipher suites require that both the server and client know the same,

88

5 Hardware Trust Anchors

pre-shared, symmetric key. This key agreement method is particularly popular for
resource-constrained devices. Asymmetric cryptography like RSA and ECC internally
use finite field arithmetic on arbitrary precision integers, which is particularly slow on
small microcontrollers to the point of impracticality. While PSK does not offer the same
security guarantees as key agreement algorithms like Diffie-Hellman (most importantly
PSK sessions do not have forward secrecy), it has the advantage of using only functions
which have comparatively good performance and are therefore suitable for deployment in
embedded systems.
If a server is operating in PSK mode and has multiple clients which connect to it, it
would be an unwise decision to simply share the same PSK among all clients. Effectively
this would mean that one client would be able to decode all sniffed traffic of all other
clients. Therefore, it is prudent that each client gets their own, unique, and random
PSK. This, however, creates a new problem: During the establishment of the connection,
the server needs to identify the client in some way to choose the correct PSK for that
particular client.
For this purpose, the specification is designed such that in PSK operation, both the
server and client reveal identifiers to their respective peers so each can perform a PSK
lookup. Two identifiers are defined in the specification: one identifies the server and
is called the PSK identity hint while the other identifies the client and is called the
PSK identity. These identifiers typically are serial numbers or UUIDs. Both strings are
completely opaque to the TLS handshake and conforming implementations only need to
fulfill minimal requirements. Namely, all Unicode-printable strings up to at least 128 bytes
shall be supported by conforming implementations. How the PSKs are determined after
each party has knowledge of its peer’s identifier is completely implementation-defined.
The specification “does not specify how the server stores the keys and identities, or how
exactly it finds the key corresponding to the identity it receives.” (Eronen and Tschofenig
2005)
In a typical scenario, the server uses the PSK identity of the client to perform a database
lookup for retrieval of the PSK. Embedded clients do not usually have a lot of different
servers which they need to communicate with, so it is common that the client either
completely ignores the server’s PSK identity hint and always uses a hardcoded key or that
it only selects one out of a handful of options programmatically. If on the client side the
PSK identity hint is unused, the specification suggests to leave it empty altogether: “In
the absence of an application profile specification specifying otherwise, servers SHOULD
NOT provide an identity hint and clients MUST ignore the identity hint field.” (ibid.)
The reason that the process to get a PSK from the peer’s hint is left open by the TLS-PSK
specification is that the authors do not want to limit the possibilities of data sources
for PSK determination. In particular, this degree of freedom enables us to implement a
TLS-PSK conforming interface while using a proprietary hardware security module for
PSK lookup.
When the handshake of a PSK cipher suite is performed, the PSK identity hint is the
first identification string that is exchanged. It is sent from the server to the client.

89

5 Hardware Trust Anchors

00 05 00 00 00 00 00 00 05 aa bb cc dd ee
Len Other Secret Len PSK

Figure 5.1: Construction of the TLS-PSK Premaster Secret

The client then responds with its PSK identity after having just learned with which
server it is communicating. After the two identity messages have been exchanged, the
server and client should be able to agree on the same pre-shared key. This pre-shared
key is then padded according to RFC 4279 (Eronen and Tschofenig 2005) to form the
so-called premaster secret. TLS allows for mixed operation of symmetric and asymmetric
operation; this means that it provides the possibility to use, for example, a Diffie-Hellman-
Exchange (Diffie and Hellman 1976) and use the PSK to authenticate the exchanged
session keys. In the following, however, we consider only the plain symmetric case
where no asymmetric cryptography is involved. For this, the premaster secret padding is
performed according to Fig. 5.1. The length of the premaster secret can be determined
from the PSK length. Note that the key shown in that example figure is short and is
meant only to demonstrate the used format of the premaster generation. In general, its
length is lPMS = 4+2lPSK bytes. The so-called other secret is the part that would include
data that results from asymmetric operations such as the Diffie-Hellman key exchange.
For the plain PSK case, it is set to a constant zero pattern of the same length as the
PSK.

The premaster secret is then further processed according to RFC 5246 (Dierks and
Rescorla 2008) to yield the master secret. It is the calculation of the appropriate
pseudo-random function with the following arguments:

• The secret is equal to the previously calculated premaster secret.

• The label is the constant string "master secret".

• The seed is the concatenation of the ClientHello nonce and ServerHello nonce.

This master secret must always be 48 bytes (384 bits) in length. Firstly, an intermediate
padding — called A — is specified. The definition of A is:

A0 = seed
Ai = HMAC(secret, Ai−1)

This intermediate product A is then used to derive the function P which outputs an
infinite bitstream:

90

5 Hardware Trust Anchors

P (secret, seed) = HMAC(secret, A1 || seed) +
HMAC(secret, A2 || seed) +
HMAC(secret, A3 || seed) + ...

Ultimately leading to the full PRF used in TLS:

PRF(secret, label, seed) = P (secret, label || seed)

Concretely, for cipher suites that use HMAC-SHA-256 (Krawczyk, Bellare, and Canetti
1997) as the TLS pseudo-random function, the whole derivation is shown in Fig. 5.2. For
the keys which we use, the PSK is 32 bytes long and therefore the premaster secret is 68
bytes in total. This premaster secret then serves as the key to the HMAC engines which
perform further key derivation. Concretely, four HMAC calculations are performed, all
parameterized with the premaster secret as their respective key.

91

5 Hardware Trust Anchors

PSK

Padding

HMAC-SHA256

Client Nonce"master secret" Server Nonce

A0

Concatenation

HMAC-SHA256K

K

Concatenation

Concatenation

HMAC-SHA256 HMAC-SHA256K
K

Truncation (48 bytes)

Concatenation

Premaster
Secret

Master
Secret

A1

A2 B2

B1

P1P0

P0 + P1

Figure 5.2: TLS-PSK master secret generation

5.2.3 Elliptic Curve Cryptography

Using elliptic curves for cryptographic purposes goes back to the proposals of Koblitz
(1987) and V. Miller (1986). Independent of each other they both suggested how an
elliptic curve over a finite field F could have cryptographic applications. In particular,
such a curve consist of a number of points P

92

5 Hardware Trust Anchors

P =
(
x
y

)
x, y ∈ F

which need to fulfill the characteristic equation of the curve E given in short Weierstrass
form:

E : y2 = x3 + ax+ b a, b ∈ F

Additionally, there is one distinct point O which is commonly referred to as the point at
infinity:

O =
(
∞
∞

)

For the underlying field F, in the following we only consider finite prime fields, i.e., Fq

with prime q. The discriminant ∆ of this curve in Fq is defined to be: (Silverman 1986;
Tate 1974)

∆ = −16(4a3 + 27b2) mod q

Such a curve is smooth and non-singular (i.e., elliptic) if the discriminant ∆ of the curve
is nonzero. As can easily be seen this is the case if and only if:

4a3 + 27b2 6= 0 mod q

On a smooth curve, a line connecting two points P and Q on the curve is guaranteed
to intersect the curve in a third point R, where R might also be equal to O. Based on
this fact, V. Miller (1986) defined the result of the commutative and associative point
addition P +Q to be

P +Q =
(
Rx

−Ry

)
P 6= Q

For this point addition, the point at infinity O serves as the identity element.

In the case of P = Q, the operation is called point doubling, and the geometric interpre-
tation is that the tangent of the curve at the point P is intersected with the curve and
gives a point S. The resulting point then is

P + P =
(
Sx

−Sy

)

93

5 Hardware Trust Anchors

Note that for a point P with Py = 0, the tangent in P does not intersect the curve in an
explicit point, but is rather said to intersect the curve at infinity:

Q+Q = O if Qy = 0

In summary, the following holds true for any points P,Q on the curve:

P +Q = Q+ P

P +O = P

With point addition and point duplication we can now proceed to define point scalar
multiplication. This means multiplying a scalar value k with a point P . The rules to
perform this operation can be expressed by the following recurrence:

0 · P = O
k · P = P + (k − 1) · P

Commonly, this is implemented using the double-and-add algorithm:

0 · P = O
1 · P = P

k · P =
{

k
2 (P + P) if k is even
P + (k − 1) · P if k is odd

To be able to exchange meaningful information about points on curves, the curve has to
be precisely defined. This definition is referred to as the domain parameters of the curve.
For curves in finite fields over a prime q, these domain parameters are:

• q the prime that defines the finite prime field Fq, i.e., all field arithmetic is performed
modulo q.

• a, b ∈ Fq which are coefficients in the curve equation E.

• G, the generator point, is a distinct point on the curve that has been agreed on.
Scalar multiplication of G forms a subgroup of E.

• n, the order of the subgroup formed by the generator point G. It follows that
n ·G = O.

94

5 Hardware Trust Anchors

• h, the cofactor of the curve. This is equal to the number of all points in Fq which
fulfill the curve equation E, also referred to as #E(Fq), divided by n. Since n is the
order of a subgroup of E, it follows from Lagrange’s theorem that the cofactor is an
integer.

Note that while n and h can be calculated from the other given domain parameters,
it is usually provided along with the other parameters. This is because counting the
points of the curve #E(Fq) is a computationally comparatively expensive operation.
For a reasonably efficient, polynomial-time algorithm for point counting, Schoof (1985)
presented a solution. This was later refined by Schoof (1995) to form the Schoof-Elkies-
Atkin algorithm which has even better performance and is currently the state-of-the-art
algorithm for counting points on elliptic curves.

With the previous definitions in mind and an agreement on specific domain parameters,
one can define meaningful high-level cryptographic operations that are required to use
ECC for signing, signature verification, and key agreement purposes. To use elliptic
curve operations for signing and verification of data, the Elliptic Curve Digital Signature
Algorithm or ECDSA (Johnson, Menezes, and Vanstone 2001) is used. In the context
of ECDSA, a private key d is simply a randomly chosen scalar value modulo n. The
corresponding public key Q, which is a point on the curve, can be calculated from the
private key simply by performing scalar multiplication with the generator point of the
curve:

Q = d ·G

To sign a message m using ECDSA with the private key d, the following algorithm is
performed:

1. Calculate a hash function over m and convert the result to an integer e.

2. Randomly select a scalar k with 1 ≤ k ≤ n− 1

3. Compute H = k ·G

4. Compute r = Hx mod n. If r = 0 then restart at 2.

5. Compute s = e+dr
k mod n. If s = 0 then restart at 2.

6. The signature is the tuple (r, s)

To verify the signature (r, s) of a given message m against a public key Q using ECDSA:

1. Assert that 1 ≤ r ≤ n− 1 and 1 ≤ s ≤ n− 1. If not, reject the signature.

2. Calculate a hash function over m and convert the result to an integer e.

95

5 Hardware Trust Anchors

3. Perform the following calculations:
u1 = e

s mod n
u2 = r

s mod n
X = u1 ·G+ u2 ·Q

4. If X = O, reject the signature.

5. Compute v = Xx mod n

6. If v 6= r, reject the signature.

7. Otherwise, accept the signature as valid.

The last primitive that is needed to use ECC in the context of TLS is a key agreement
protocol. TLS uses the Elliptic Curve Diffie-Hellman (ECDH). It is a transfer of the
Diffie-Hellman key exchange (Diffie and Hellman 1976) to the ECC cryptosystem and
was already suggested by Koblitz (1987) and V. Miller (1986) in their original ECC
papers. A formal specification is also available (American National Standards Institute
2001; McGrew, Igoe, and Salter 2011). Sophisticated public key plausibility checks are of
utmost importance for real-world implementations; such checks are explained in detail
by Antipa et al. (2002) and Law et al. (2003).

ECDH uses the same semantic for public and private keys as ECDSA. Consider two
parties which both have generated key pairs. One party has the private key d1 with its
corresponding public key Q1 = d1 ·G and the other has the private key d2 and a public
key Q2.

The ECDH algorithm is now performed viewed from the side of party 1 (i.e., in the
beginning, only d1 and Q1 is known).

1. Receive the peer’s public key Q2. Verify its integrity by checking:
• Assert that Q2 6= O

• Assert that Q2x ∈ Fq and Q2y ∈ Fq

• Assert that Q satisfies the curve equation (i.e., it is a point on the curve).

• Assert that n ·Q = O

2. Calculate K = d1 ·Q2. This is the shared point that can be used for derivation of a
secret.

ECDH leads to the same point K for both communication parties because of the definition
of Q1, Q2:

K = d1 ·Q2 = d1 · (d2 ·G) = d2 · (d1 ·G) = d2 ·Q1

This point K can then be used as input to other functions such as a bulk encryption
algorithm or an authentication function like HMAC.

96

5 Hardware Trust Anchors

5.2.4 OMA Lightweight M2M

The OMA Lightweight M2M Specification (Open Mobile Alliance 2016) does not specify
a custom security layer. Instead, it refers to and relies on DTLS, the datagram based
version of TLS (Modadugu and Rescorla 2004; Rescorla and Modadugu 2006).

Concretely, the LWM2M protocol defines cipher suites that a conforming implementation
must implement. On the client-side, only one needs to be implemented while the server
side — usually backend systems with enough resources — are expected to handle all
different options. The cipher suites of LWM2M which utilize pre-shared keys are:

• TLS_PSK_WITH_AES_128_CCM_8 (McGrew and Bailey 2012): Key agreement via PSK
(no forward secrecy), encryption with AES-128-CCM, authentication using CCM-
AEAD with an 8 bytes authentication tag.

• TLS_PSK_WITH_AES_128_CBC_SHA256 (Badra 2009): Key agreement via PSK (no
forward secrecy), encryption via AES-128-CBC, authentication using HMAC-SHA256.

For asymmetric handshakes, the following cipher suites are conforming to the specification:

• TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 (Rescorla 2008): Key agreement via ephem-
eral ECDH (forward secrecy), exchanged keys signed with ECDSA, encryption with
AES-128-CCM, authentication using CCM-AEAD with an 8 bytes authentication
tag.

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (ibid.): Key agreement via ephemer-
al ECDH (forward secrecy), exchanged keys signed with ECDSA, encryption via
AES-128-CBC, authentication using HMAC-SHA256.

Therefore, the block cipher AES-128 is going to have to be present in any case, as is
the SHA-256 hash function, which is implicitly used as the pseudorandom function for
these TLS v1.2 cipher suites (and for some of them also performs authentication). If a
symmetric HSM would, therefore, be able to perform HMAC-SHA-256, it could directly
store the TLS premaster secret and be used for key derivation. Similarly, if an asymmetric
HSM would perform ECDH and ECDSA, it could also be used as a transparent drop-in
replacement. Unfortunately, the hardware we chose does not have an interface that allows
for such trivial integration.

5.3 Implementation with Symmetric Cryptography HSMs

In Sect. 5.2.2 we laid out the cryptography which is used during the TLS-PSK handshake
in detail. When taking a look at the master secret computation, as shown in Fig. 5.2, it
is noticeable that the basic building block to derive the master secret from the premaster

97

5 Hardware Trust Anchors

secret is the HMAC-SHA-256 computation. The premaster secret, in turn, is derived
from the PSK by fairly trivial padding and length field concatenation. Therefore, if the
module allowed for storage of an HMAC-SHA-256 key, one could simply safely store away
the premaster secret and integration of the module would be completely transparent. For
storage of a 32 bytes key, this would mean that a 14 bytes (112 bits) long PSK could
effectively be used.
The caveat is that in practice, the available HSMs are usually not that flexible. Most
commercial-off-the-shelf HSMs have a proprietary interface and therefore are not be
directly compliant to the process. They usually do not directly support HMAC-SHA-256
in an unaltered (i.e., non-proprietary) manner.
One other solution would be to define a custom cipher suite which internally has a
modified master secret derivation which fits the hardware interface. This cipher suite
would need to be implemented on both the client and server side. However, such an
approach would introduce a great disadvantage: firstly, such a cipher suite would be
a completely non-standard, custom extension of the TLS protocol. Secondly, the TLS
library itself would need to be modified to implement such a cipher suite. This means
that only libraries can be modified of which the source code is available, and modification
is permitted as by the license. Lastly, any such changes would have to be ported when
the library is updated by the upstream vendor. Because the internal API does not need
to be stable, this can be a time-consuming process.
Our basic idea is, therefore, different. We do not use the HSM for the derivation of the
session keys or for the derivation of the premaster secret — we instead use it to derive
the pre-shared key (PSK). The key which is stored within the HSM itself is, therefore, a
pre-PSK (pPSK). This allows us to use all standard mechanisms of the TLS-PSK key
derivation while still incorporating a proprietary key derivation mechanism. For this
derivation to work, nonces need to be exchanged between the client and server. This is
where the identity messages which we explained in Sect. 5.2.2 come into play: we use
those identity messages to exchange nonces on a per-connection basis. While the TLS
handshake itself does additionally use client and server nonces, these usually are not
available from the application which links against a TLS library. In alignment with our
previous reasoning of not wanting to modify the TLS library internals, we, therefore, opt
simply to use additional nonces on top of the already existing ones.
Because the TLS library needs to perform a PSK lookup using an application-specific
mechanism, TLS libraries, in general, provide a callback function for this purpose. A
client side TLS-PSK callback function is called with the PSK identity hint of the server
and is expected to return the PSK and the client PSK identity. This is a single, clean,
interface which is present across all reasonably implemented TLS libraries in one form or
another. Therefore, it is the ideal place to implement our custom pre-PSK derivation
using an HSM there.
Fig. 5.3 shows an abstract representation of an HSM that can securely store symmetric
keys. This means that uploading a key is possible, but this key cannot later be downloaded
from the module. However, the key can be used via an external interface. Functions which

98

5 Hardware Trust Anchors

Keyslot 0: ffffffff

HSM Key StoragesetKey(slot, key)

encrypt(slot, ptext)

decrypt(slot, ctext)

mac(slot, data)

Keyslot 1: 00f00ba5
Keyslot 2: deadbeef
Keyslot 3: aabbccdd

Figure 5.3: Basic layout of a symmetric HSM

rely on shared secrets to performing computation are, for example, en- or decryption
operations or hashed message authentication codes (HMAC; Krawczyk, Bellare, and
Canetti 1997). These keys can be referenced by their specific key slot identification
number to be used by the module to perform certain tasks:

• setKey: Set a certain key slot to a value.

• encrypt: Encrypt a given plain text to a cipher text using previously stored key.

• decrypt: Decrypt a given cipher text to a plain text using previously stored key.

• mac: Perform a particular authentication function over a given message and return
the MAC, parameterized with a previously stored key.

For our concrete implementation of TLS-PSK with a symmetric HSM, we chose the Atmel
ATSHA204A module (Atmel Inc. 2015b). Among other features, it allows computation
of a message authentication code (MAC) using an Atmel-proprietary but published input
format. In principle, this function could be used to derive the session keys directly; this
would, however, mean that the key exchange within TLS would become proprietary as
well, and a new, custom, cipher suite would need to be defined for this. Since such an
approach would cause all sorts of issues regarding compatibility, we chose a different
approach:

IDs || rs

Client ServerHSM

rc || rs

m

IDc || rc

Figure 5.4: Key exchange using a symmetric HSM

In the context of TLS-PSK, we use the following construction: The server includes a
random 16 bytes nonce rs along with its server identity information IDs in the “PSK
identity hint” message. The client, which is in possession of the HSM, generates an
own 16 bytes random nonce rc — possibly, but not necessarily, with the help of the

99

5 Hardware Trust Anchors

HSM. Then both nonces are given to the HSM for it to perform a MAC computation
using the pre-PSK. The resulting MAC value is used as a PSK. To enable the server
also to calculate the effective PSK, the client relays rc together with the client identity
information IDc within the “PSK identity” message to the server. The server can then,
with the help of a lookup of the pre-PSK, reproduce the proprietary MAC computation
used by the client and can therefore also derive the session key.
It is important to note that a module does not need to implement all of these functions.
In most real-world devices there is also the capability to configure which keys are allowed
to be used with which API functions. There are usually also mechanisms in place to
prevent arbitrary function execution; for example, the hardware might always incorporate
device-specific bits in the authentication function such as a serial number or the device
configuration itself. It might also require authentication of some sort before allowing the
API to perform any action at all.
A concrete instance of a symmetric hardware security module is the Atmel CryptoAuthen-
tication ATSHA204A (Atmel Inc. 2015b). It is a small, relatively cheap (≈ $0.40 per unit
in volume) device that provides safe key storage, hardware intrusion countermeasures
and has a SHA-256-based authentication engine at its core. Even though the device is
advertised as being capable of calculating HMAC-SHA-256 this is — probably due to
hardware and cost constraints — only possible in a very restrictive manner: When the
HMAC command is used, the most limiting factor is that the HMAC input data cannot be
arbitrarily chosen, but has a fixed format that is not compatible with the way expected
by TLS-PSK as explained in Sect. 5.2.2.
A newer version of the device (ATSHA204A) has an added SHA command which the
older generation (ATSHA204) does not offer. However, it is also not possible to use this
command to emulate HMAC-specific padding by hand. The user has to supply all data
for operation in this mode, and it is not possible to load secret keys from the internal key
storage. Since this is the only point of having the device in the first place, this options
also drops out.
One thing the device offers, however, is a MAC command that computes the SHA-256 hash
in a proprietary format over 88 bytes of data. Our idea that can be used to implement
TLS-PSK with a device that allows such a proprietary computation is to use the command
to derive a pre-shared key from a master key that is stored both on the device itself and
on the server side. For the device to be effective, however, it is necessary to challenge
the device every time a new session should be established. Since the challenge data in
practice is only exchanged in the TLS protocol at the time the PSK callback occurs,
another mechanism has to be used. In our implementation, we use the PSK Identity
Hint and the PSK Identity for this purpose. Each side supplies 16 bytes (128 bits) of
random data to its peer. The PSK that both sides then agree on is the result of the
MAC command over the concatenation of both nonces. To generate random data with
good entropy, the TRNG of the ATSHA204A is used in the process using the Random
command.
The server and client both select a random nonce during the TLS handshake procedure.

100

5 Hardware Trust Anchors

0x00 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b |KKKKKKKKKKKKKKKK|
0x10 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b |KKKKKKKKKKKKKKKK|
0x20 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 |SSSSSSSSSSSSSSSS|
0x30 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 |CCCCCCCCCCCCCCCC|
0x40 4d 4d 4d 4d 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4e |MMMMOOOOOOOOOOON|
0x50 4e 4e 4e 4e 4e 4e 4e 4e |NNNNNNNN|
0x58

Figure 5.5: Input data for the SHA-256 function of the ATSHA204A MAC command

Both have an identifier — the PSK identity hint for the server and PSK identity for the
client — that they also need to transmit to their respective peer. This is no problem,
however: The original PSK identity or PSK identity hint is simply concatenated with
the binary 16 bytes nonce. The result is then Base64 encoded (Josefsson 2003). After
Base64-Decoding each party simply truncates the last 16 bytes away. We chose this format
for efficiency, but any other format that does not violate the TLS-PSK specification could
be chosen to transport the nonces rs and rc to its corresponding peer.
Fig. 5.5 shows the input to the SHA-256(National Institute of Standards and Technology
2002) algorithm as it is used by the ATSHA204A (Atmel Inc. 2015b) when it executes
the MAC command. In the image, every letter resembles exactly one byte of input data,
and it is fed to the ATSHA204A in exactly the depicted order. The components which
influence the outcome of the computation are:

• K: 32 bytes secret authentication key. This is one part of the pPSK, which, at
production time is stored within the module and is ensured to be kept safe by the
security features of the module itself. This pPSK needs to be available on the server
side as well to be able to reproduce the key derivation.

• S and C: A total of 32 bytes public, random nonces which together form r. 16 bytes of
this nonce are created by the server while the other 16 bytes are created by the client.
The nonces are exchanged during the TLS handshake inside the PSK identity hint
and PSK identity messages, as explained in Sect. 5.3. Note that in our construction
we first feed the server nonce into the SHA-256 function and feed the client nonce
into the module afterward.

• M: 4 constant bytes which encode which command was used, which mode the module
is used in and what key slot is used. The value of these bytes is public. It for examples
encodes the MAC mode itself, the key slot which is used and whether or not the
following field, O, is fed from internal memory or is regarded as zero.

• O: 11 bytes of one-time programmable (OTP) memory of the ATSHA204A. These
bytes can also be randomly chosen at production time and can then be considered an
addition of the pPSK or the module can be configured to set these bytes to constant
zeros. If they are used to augment the pPSK, they need to be stored on the server
side to be able to reproduce the key agreement. Because they can be used to augment
the key, we regard this value to be private.

101

5 Hardware Trust Anchors

• N: 9 bytes unique serial number of the ATSHA204A. This unique serial number is
given out by the vendor of the module and identifies the module uniquely. This serial
number is regarded as public for our security considerations. During production, this
number needs to be read out of the specific module and stored on the server side as
well.

• Workload factor ω. This is a public value which determines how often the hash
function is called to derive the final PSK. It can be used to slow down the rate
artificially at which a TLS client in possession of a valid HSM can generate PSKs.

The key derivation, in detail, works like this: For the first iteration, the module challenge
ρ is equal to the concatenated server and client nonces, S ||C. For each subsequent
iteration, the challenge is the output of the previous round:

ρ0 = S ||C = r

ρn = SHA-256(K || ρn−1 ||M ||O ||N)
PSK = ρω

def derive_psk(self, server_nonce, client_nonce):
assert(isinstance(server_nonce, bytes) and (len(server_nonce) == 16))
assert(isinstance(client_nonce, bytes) and (len(client_nonce) == 16))
assert(isinstance(self.omega, int) and (self.omega >= 1))
challenge = server_nonce + client_nonce
for i in range(self.omega):

challenge = self.mac(ppsk = self.ppsk, mode = self.mac_mode,
otp = self.otp, serialno = self.serialno,
challenge = challenge)

return challenge

Listing 5.1: Python code to derive a PSK

The code in List. 5.1 shows the programmatic interpretation of this. For the server
to be able to calculate the same PSK as the HSM itself, it needs to know the tuple
(K,M,O,N, ω). That means, for example, that it needs to be predefined which specific
key slot is used by the hardware, because this influences the outcome of the MAC command
via the M parameter. Together with this stored information and the session nonces
(S,C) it is possible to derive the 32 bytes PSK.

5.4 Implementation with Asymmetric Cryptography HSM

A hardware security module which can conduct asymmetric cryptography can be even
more useful than a module which only can use symmetric cryptography. The necessary

102

5 Hardware Trust Anchors

cryptographic implementations that the relevant TLS cipher suites which are used in
the context of LWM2M are all based on the elliptic curve Diffie-Hellman key agreement
protocol. To authenticate the keys which were agreed on, they are signed with an elliptic
curve key pair. These are two distinct operations. Regarding the TLS cipher suite, this
is referred to as the ECDHE-ECDSA key agreement and the authentication is specified
in RFC4492 (Blake-Wilson et al. 2006). Concretely, this key agreement works as follows:

• It is assumed that each party is in possession of a static ECDSA key pair (d1, Q1)
and (d2, Q2).

• Upon initialization of communication, each party generates a second, ephemeral, key
pair (t1, R1) and (t2, R2).

• Each party signs their ephemeral public key using their static ECDSA private key.
That is, R1 is signed by d1 and R2 is signed by d2.

• The signed ephemeral public keys are exchanged.

• Each party verifies the signature of the received ephemeral public key. That is, R1 is
verified by party 2 using Q1 and R2 is verified by party 1 using Q2.

• After successful signature verification, each party performs the ECDH computation
using their ephemeral private key and the ephemeral public key of the respective peer.
The shared point K = t1R2 = t2R1.

• Of this shared point K, the X coordinate in affine representation is taken as the
premaster secret for all following key derivations.

Concretely, the ECC operations ECDH and ECDSA are performed over the curve NIST
P-256 (National Institute of Standards and Technology 1999). Now consider a hardware
security module such as the one shown in Fig. 5.6. The concrete instance we show there
is a module which uses the RSA cryptosystem, not ECC. This is because we want to
illustrate that our approach works even with asymmetric HSMs which have nothing in
common with the used cryptography within the TLS handshake.

genKey(slot)

decrypt(slot, ctext)

sign(slot, msg)

getPubKey(slot)
Private Keys

Keyslot 0: 963db
Keyslot 1: 6021b
Keyslot 2: 599c3
Keyslot 3: 45a27

Public Keys

kex(slot, peerdata)

3, e1d4b
3, 9092b
3, 86c71
7, a2e21

Figure 5.6: Basic layout of an asymmetric HSM based on RSA

The operations this module supports are as follows:

103

5 Hardware Trust Anchors

• genKey: Generate a new public/private key pair within the HSM on the given key
slot. Note that the corresponding private key never leaves the HSM. In contrast
to the symmetric modules, the key is therefore not known even to the person who
legitimately uses the HSM.

• getPubKey: Extract the public key for a given key slot.

• decrypt: Decrypt some cipher text using the internal private key in a given key slot.

• sign: Sign a message using the internal private key in a given key slot.

• kex: Perform a key exchange. For this, use the data supplied by the peer together
with the private key in the given key slot.

With that formal model of an asymmetric HSM, we now differentiate three different
types of concrete HSM:

1. The module supports ECDH and ECDSA on NIST P-256. Such a module is the
Atmel ATECC508A (Atmel Inc. 2015a).

2. The module supports only ECDSA on NIST P-256. Such a module is the Atmel
ATECC108A (Atmel Inc. 2016).

3. The module supports neither ECDH nor ECDSA on NIST-P256 but offers a pro-
prietary form of asymmetric key agreement and a proprietary form of asymmetric
signature. This could be an HSM which operates on different elliptic curves or an
HSM which uses an entirely different cryptosystem, like our exemplary RSA-HSM in
Fig. 5.6.

Based on this, we can use three different implementations with varying degrees of security.
Case 1 is the easiest of the three. A module which supports the cryptographic primitives
just as the TLS handshakes can be integrated effortlessly and in a completely transparent
manner. The only thing that needs to be done is implementing the glue code between
the HSM and the TLS library as a hardware engine driver. This means that the software
calls the ECDH and ECDSA functions of the driver, which in turn relays the commands
to the HSM and pass the responses along. At production time, the only thing that needs
to be done is to have the module create a static key pair, read the corresponding public
key out and store it in the backend. During session establishment, the module creates a
new ephemeral key on-the-fly in a different key slot and performs ECDH with it. It also
reads out the ephemeral public key and signs it using the ECDSA signing function with
the static private key.
Case 2 is only slightly more complicated. Here, the generation of the ephemeral key
needs to be done by a software implementation, but the signing of the ephemeral public
key is relayed to the HSM. Even though ECDH is performed in software, the important
part is the static long-lived key inside the HSM. At the time of production, the same
procedure as in case 1 has to be performed.

104

5 Hardware Trust Anchors

It becomes a bit more complicated when looking at case 3. However, when looking how
we solved the proprietary interface problem for the symmetric case in Sect. 5.3, this might
seem familiar. We employ an asymmetric HSM, but we use a symmetric PSK handshake.
Then, in the PSK identity hint message of the server to the client, we embed the server’s
public key. This is an opaque binary blob which might be in a proprietary storage format
recognized by the HSM. The HSM then performs the kex() function with this provided
peer data and an ephemeral key which was generated. The result of this key agreement
is used as a PSK. Then it signs this ephemeral public key with a static public key and
transmits that signed ephemeral key back to the server inside the PSK identity message.
This completely emulates the way the asymmetric TLS handshake is usually done and
uses the PSK cipher suite only as a technical means to set the key without having to
modify the TLS library. Of the three option, this is the one requiring the most work. It,
however, offers — in contrast to a PSK cipher suite used with a symmetric HSM — two
advantages: First, this type of key agreement gives the session forward secrecy. Secondly,
the backend does not need to store private keys, but only public values of the end nodes.
This is an advantage because it makes hardening of backend systems much easier when
there is less data that can be potentially lost during an attack.

5.5 Security Evaluation

We now differentiate between the two general types of modules — ones with symmetric
and others with asymmetric cryptographic capabilities — and separately evaluate their
security.

5.5.1 Security with Asymmetric Cryptography HSMs

To determine the security implications of our asymmetric approaches, we first need to
clarify which aspects of our proposed scheme are important for assessing the security of
the overall construction. When using an asymmetric HSM, as explained in Sect. 5.4, no
protocol messages change if the implementation can manage to offload either the ECDSA
or both the ECDSA and ECDH computation on the HSM. In fact, for these two cases
the TLS protocol stays the same no matter whether an HSM is used on the client side
— the only thing that changes is whether or not the corresponding client private key is
safely stored or not. Therefore, these cases do not need to be evaluated separately. If
it can be assumed that the ECDH-ECDSA part of TLS is secure algorithmically, and
the HSM does not introduce a source of disturbance (such as side channel leakage or a
weak random number generator), the protocol is not weakened by the introduction of our
hardware security module. It can, in fact, be viewed as if it solely were a cryptographic
accelerator chip.

For our constructed imaginary HSM with proprietary handshakes, our reasoning is similar.
We make the following assumptions:

105

5 Hardware Trust Anchors

• The proprietary key agreement function of the HSM is producing shared secrets with
at least the level of entropy that is desirable for the security of the connection.

• The key agreement function does not exhibit key leakage, undefined behavior or side
channels, even when confronted with intentionally malicious peer input.

• The signing function provides a level of security that is appropriate for the level
of security the connection requires and that signing function is nonsusceptible to
low-entropy attacks such as nonce reuse issues in the case of ECDSA.

• The underlying PSK cipher suite is secure to the amount that is required by the
connection itself.

Then it can be reasoned that the procedure we suggest is simply an analogous emulation
of the TLS standard as it exists today and as it has been extensively peer-reviewed.
Therefore, the construction we propose should be secure to the same amount.

5.5.2 Security with Symmetric Cryptography HSMs

For the symmetric HSM, however, our analysis is more complicated. As we explained in
Sect. 5.3, a TLS library usually calls a PSK lookup callback function. In this function,
we perform out our PSK derivation using the pre-PSK (pPSK) which has been stored
in the HSM. It is important to stress that for the security of the TLS-PSK protocol,
such a derivation of a key is in no way required. In fact, the contrary is the case: any
implementation which returns a constant, but secret, value fully benefits from the security
guarantees of TLS-PSK. Therefore, within the security review, we merely need to ensure
that our PSK derivation is, from a cryptographic point of view, better than the identity
function to achieve at least the same level of security that TLS-PSK would provide
without an HSM.

To explain it formally, instead of using a PSK directly in the classical sense, we securely
store a pre-PSK in the HSM. From that pPSK we derive the PSK using the module-
proprietary derivation function κ and a nonce r:

PSK = κ(pPSK, r)

Formally, for the case without an HSM, we can also define a pPSK which however is
identical to the PSK. The function κ refers to the identity function. To stress it again,
our proposal does not replace the internal TLS-PSK master secret derivation at all. It is
additionally used at the beginning of the key agreement of a connection.

5.5.3 Attack Scenarios and Assumptions

We differentiate two different attack scenarios:

106

5 Hardware Trust Anchors

1. An attacker who can eavesdrop and modify the connection between client and server
gains knowledge of the pPSK, i.e., the secret parts of the key tuple (K,O). In this
attack scenario, the master key is compromised.

2. An attacker who actively modifies a connection can force a specific PSK derivation
by manipulation of the transmitted server nonce S. In contrast to the previous case,
this scenario compromises a session key.

The implications of these attacks is as follows:

1. Attack 1: An attacker who learns (K,O) can decrypt all connections which were
recorded and have taken place in the past. This is because the specific PSK cipher
suite we use does not offer perfect forward secrecy. Additionally, all connections which
take place in the future can be eavesdropped on by the attacker, and the adversary
could additionally selectively modify this connection when using a man-in-the-middle
(MitM) attack.

2. Attack 2: An attacker who can manipulate the TLS handshake by manipulation
of the value S and who is, therefore, able to force a specific connection to derive a
PSK known to the attacker needs first to actively take part in the handshake for this
manipulation to occur. Then the attacker can decrypt and modify the traffic of the
compromised session traffic at will.

For our analysis, we make the following assumptions:

1. An attacker who can passively eavesdrop connections is not able to learn the PSK
from the exchanged messages. This implies that we inherently trust the cryptographic
primitives which are given by TLS-PSK.

2. The random number generator (RNG) of the client is assumed to be ideal; it produces
high-quality random numbers with high entropy and these numbers follow a uniform
statistical distribution. For our implementation, this implies that we trust the
assertion of the HSM vendor in the quality of their RNG.

3. The hash function SHA-256 is considered to be an ideal cryptographic hash function.
It exhibits an avalanche property, and the distribution of hash values is statistically
uniform. We, therefore, trust the integrity of SHA-256 and assume there are no
algorithmic attacks on the compression function itself.

These assumptions are sensible for the following reasons:

Assumption 1 is the prerequisite to calling TLS-PSK secure in the first place: As described
in Sect. 5.5, if no hardware security is used, the system is identical to one where the
function κ to derive PSK from pre-PSK is the identity function. If it were possible in the
construction of TLS-PSK to gain knowledge of the PSK by observation of the control
flow, an attacker could simply do this and break all security goals which TLS tries so
offer.

107

5 Hardware Trust Anchors

Assumption 2 is plausible because the client side ATSHA204A offers a true random
number generator (TRNG). If this generator is used and the vendor’s claim is true, there
would be a high-quality entropy source present in the client that can and should be used
to generate the random nonces.

Last but not least, assumption 3 treats SHA-256 as an ideal compression function with
256 bits hash length. Gilbert and Handschuh (2004) take a detailed, in-depth look at
the SHA-2 family of hash functions and conclude that all in the literature described,
attacks against hash functions are not practically applicable to SHA-256. Both Aoki
et al. (2009) as well as Khovratovich, Rechberger, and Savelieva (2012) describe attacks
against SHA-256; in both cases, however, the authors deal with round-reduced versions
of the hash function. Up to date, there is no known cryptanalysis against the SHA-256
with the full number of rounds which has a complexity that is smaller than that of a
brute force attack.

5.5.4 Theoretic Analysis

In the following we analyze our PSK derivation with the weakest possible load factor,
ω = 1. Then the type of message composition the hardware uses can be viewed as
an envelope construction as described by Tsudik (1992). In it, a MAC m over a given
message M is calculated by concatenating M with keys on both the left and right side
before the concatenated message is run through a cryptographic hash function (Menezes,
Oorschot, and Vanstone 1996):

m = H(K1 ||M ||K2)

Applying that to the construction which is used by the ATSHA204A we, therefore, arrive
at:

K1 = K, M = S ||C, K2 = M ||O ||N

Envelope constructions have been thoroughly analyzed in literature because of their pop-
ularity in protocols like IPsec (Metzger and Simpson 1995). Preneel and Oorschot (1995,
1996) note in their analysis that envelope constructions are fundamentally vulnerable
to a divide and conquer attack if it is possible to create message forgeries which have
appended suffices. For the ATSHA204A, however, it is an unalterable constraint of the
hardware that the calculated hashes are always ever performed over the static 88 bytes
of data shown in Sect. 5.5; therefore these attacks are not applicable to our scenario.

In the construction described by us, the value that is the result of the HSM’s MAC
function is used as a PSK for TLS. It directly follows from assumption 1 that the attack
1 does not apply here: if an attacker is unable to determine the PSK from the exchanged
messages and the PSK is the output of the MAC-function, then an attacker cannot

108

5 Hardware Trust Anchors

recover m from intercepted traffic. If the attacker does not have m, she cannot draw
inferences from it about the tuple (K,O) which led to the calculation of that m.

However, an attacker is free to modify arbitrarily S during the handshake phase; since it
is transmitted in plain text as part of the PSK identity hint message, it is transmitted in
plain text without any authentication. The attack scenario 2 still is not applicable here:
The direct consequence of assumption 2 in conjunction with assumption 3 leads to the
fact that the resulting PSK m changes in an avalanche fashion because of the used client
nonce. This means an attacker cannot choose an a priori value S because m significantly
depends on the value C which is only generated after S has already been received by the
client.

5.5.5 Practical Analysis

To quantify the level of security, we now consider the worst case estimate. The assumption
we make for an extremely strong attacker model. Namely, these assumptions are:

• An attacker has direct access to the result m of the MAC function (i.e., the PSK).
The attacker knows the serial number N and the configuration options M of the
ATSHA204A.

• The attacker can manipulate not only the server side nonce S but also the client-side
nonce C at will.

• A divide and conquer attack on the cryptographic construction is possible (even
though, as shown in Sect. 5.5.4, this is not the case in practice).

• The complexity of the divide and conquer attack would solely depend on the 11 bytes
OTP suffix O; since the attack complexity of the divide and conquer attack is 2 k

2

messages, this would be 244 messages in our concrete case.

• There is no communication overhead towards the ATSHA204A; every execution of
the MAC operation takes its typical execution duration of 12 ms.

If an attacker now tries to extract the module-internal key K, she would need to have
access to 244 messages with corresponding valid MAC value to have reasonable chances
of success regarding a key recovery attack. Calculation of this number of messages alone
would, however, take:

ω · 244 · 12ms ≈ ω · 2.11 · 1011 sec ≈ ω6690 yr

For this type of attack, the inherent hardware limitation of the module itself is the
bottleneck because the module is not capable of calculating the MAC command any
faster. In practice, the attack is, due to real-world circumstances, much more difficult
than our attack model and therefore not be applicable. However, consider a different

109

5 Hardware Trust Anchors

type of attack, where an attacker does not need a hardware security module, but can rely
on ASIC hardware. Since SHA-256 is used in BitCoin mining, much effort has been put
into optimization of hash cracking ASICs. This means that we have very good real-world
estimates of efficient hash-cracking systems. One such system is the BitMain AntMiner
S7 (Bitmain Technologies Ltd. 2016). It delivers 4.73 TH/s at 1293 Watts, which equals
an efficiency of 3.66 GH

s·W . Consider therefore an alternative attack scenario:

• The attacker can make use of the birthday phenomenon, reducing the complexity of
finding a collision in SHA-256 to 2128.

• Power is available to the attacker for $0.10 per kWh of energy.

• The attacker spends $1000 per day on electricity; the hardware is free.

• The system’s efficiency starts with 3.75 GH
s·W , but automatically increases exponentially

according to Moore’s Law (i.e., it doubles every 18 months).

• The workload factor ω was chosen to give the weakest possible construction, i.e.,
ω = 1.

This leads to the following calculation. The energy that is available to the attacker every
day is:

E = $1000
$0.10
kWh

= 10000 kWh = 3.6 · 1010 J

Therefore, the system’s initial throughput η0 is:

η0 = 3.75 GH
s ·W ·

E

day = 1.35 · 1020 H
day

Considering that η has exponential growth according to Moore’s law and doubles every
18 months (i.e., 547 days), we get the throughput function in dependence of the elapsed
time t:

η(t) = η0 · 2
t

547 day

With those numbers we can now calculate the time t it would take for such an attack:

t · η(t) = 2128 H

t · η0 · 2
t

547 day = 2128 H

t · 1.35 · 1020 H
day · 2

t
547 day = 2128 H

110

5 Hardware Trust Anchors

We define

t = x · day

to simplify the calculation:

x · 1.35 · 1020H · 2
x

547 = 2128 H

x · 2
x

547 = 2.52 · 1018

Solving for x:

x = 547
ln 2 ·W

(
2.52 · 1018 · ln 2

547

)
≈ 789 ·W (3.19 · 1015)

where W is the Lambert W function. This gives a solution of

x ≈ 25426
t = x · day = 25426 · day

i.e., around 70 years and a total cost of about $25 million. It can, therefore, be concluded
that, notwithstanding our strong attacker model, as long as our basic assumptions hold
true, this is a computationally infeasible type of attack.

5.6 Conclusion

With our work, we show that the integration of hardware security modules in preexist-
ing security infrastructures is not only feasible but even practical. Our approach for
incorporation of symmetric hardware security modules does not need any modification
in the internal protocol structure of DTLS. Likewise, for our asymmetric hardware
security module, we show that the implementation and resulting security considerations
are even easier than in the symmetric case. This allows for flexible integration into the
TLS infrastructure. For the symmetric case, all code that needs to be implemented can
be written as part of the application without modification of the TLS library. For the
asymmetric case, an engine API can be used; since this is commonly available to allow
for cryptographic acceleration hardware, it is also a practical alternative — with the
added benefit of creating a completely transparent integration of the HSM into the TLS
handshake. Since the price of such modules is relatively low, this, therefore, enables
applications in the low-cost segment to benefit from hardware that is specifically designed
to withstand physical attacks. Our work, therefore, is a concrete contribution towards
the hardening of these types of end nodes against physical attacks.

111

Chapter 6

DRAM Scrambling

As hard disk encryption, RAM disks, persistent data avoidance technology and memory-
only malware become more widespread, memory analysis becomes more important.
Cold-boot attacks are a software-independent method for such memory acquisition.
However, on newer Intel computer systems the RAM contents are scrambled to minimize
undesirable parasitic effects of semiconductors. While not intended to be of cryptographic
protection, this RAM scrambling was largely considered prohibitive to performing raw
memory acquisition by direct readout of the memory chips.

In this chapter, we present a descrambling attack that requires at most 128 bytes of
known plaintext within the image to perform the full recovery. This attack is further
refined by us using the mathematical relationships within the keystream to at most
50 bytes of known plaintext for a dual memory channel system. Therefore, we enable
cold-boot attacks on systems employing Intel’s memory scrambling technology.

The research in this chapter has been presented at the European Digital Forensic
Research Workshop (DFRWS EU 2016) as a full paper and was published in Digital
Investigation (Bauer, Gruhn, and Freiling 2016).

6.1 Introduction

For several reasons, the contents of volatile memory (RAM) are a valuable piece of digital
evidence during a forensic investigation. Firstly, the keys for full disk encryption are
usually stored in RAM. Extracting such keys from a memory snapshot, therefore, allows
accessing contents of encrypted storage that would be inaccessible otherwise. Secondly, a
plethora of other information about the current system state can be recovered from RAM,
including ephemeral cryptographic communication keys, the list of running processes and
the details of active network connections. Last but not least, new forms of memory-only
malware can only be analyzed while they are active in memory. So overall, with the
increasing use of encryption technology, cloud storage, and memory-only malware, forensic
memory image acquisition has become increasingly important.

There has been a lot of debate on how to properly perform imaging of volatile memory
since there exist a variety of options (Vömel and Freiling 2011). One commonly chosen
option is runtime acquisition via software using specific memory acquisition tools like
WinPmem. While this method appears convenient in many cases, memory imaging may
be manipulated by malware that hides in inaccessible memory regions (Stüttgen and
Cohen 2013), thus creating a memory image that is not forensically sound. Another

112

6 DRAM Scrambling

problem of software acquisition methods is that they operate concurrent to regular system
activity and therefore produce inconsistencies that do not occur in “perfect” memory
snapshots (Vömel and Freiling 2012). A generic option that avoids these problems is
to perform a so-called cold boot attack. These attacks exploit the remanence effect of
modern RAM technology.

Modern RAM technology is commonly based on dynamic random access memory (DRAM),
a type of RAM in which the cells which store data are constituted of an array of capacitors.
Each capacitor is either charged or discharged, depending on whether the cell bit is set
or cleared. Since capacitors have a leakage current, their data content slowly dissipates
over time. Therefore, to effectively use DRAM, each and every cell has to be periodically
refreshed. This is achieved by reading the contents and writing it back to the RAM chip.
The time that DRAM keeps its contents without leakage affecting the content is referred
to as retention time. The fact that the retention time is nonzero and that memory keeps
its contents for a while nevertheless even when it is not actively refreshed is referred to
as the remanence effect. It is well-known from electrical engineering that the leakage
current of capacitors grows exponentially with their temperature (Wyns and Anderson
1989). Therefore, the retention time of RAM dramatically decreases with increased chip
temperature.

Cold boot attacks exploit the remanence effect and can be executed in two ways: One
way (Halderman et al. 2009) is to reset the target computer by using the reset button
and boot from an alternative medium such as USB using a special imaging USB stick
that contains only a minimal operating system together with imaging software such as
memimage (ibid.). Ideally, the original contents of RAM are maintained and can be
recovered, apart from those parts that have been overwritten by the acquisition software.
Unfortunately, such an attack is easily thwarted by using trivial protection mechanisms
like BIOS passwords.

The other way to perform cold boot attacks is to “transplant” the RAM module physically
at runtime from the device under investigation into an acquisition computer and perform
image extraction on that second computer. When the semiconductors are properly cooled
before transplantation, they retain most of their content. It is, therefore, beneficial to
freeze the DRAM modules using a cooling spray to increase the remanence effect. To
the best of our knowledge, this second form of cold boot attack is paradigmatic for the
class of memory acquisition procedures since it combines genericity, availability and offers
the highest level of integrity and atomicity for the acquired memory images (Vömel and
Freiling 2011, 2012).

While the remanence effect itself is already well-studied (Hamamoto, Sugiura, and Sawada
1998; J. Liu et al. 2013), Halderman et al. (2009) were the first to exploit it to attack
full disc encryption systems on desktop PCs. However, it has been shown that cold
boot attacks also affect a multitude of other devices such as smartphones (Müller and
Spreitzenbarth 2013). The dominating RAM technology at that time was called DDR2.
Recently, however, Gruhn and Müller (2013) reported that the results of Halderman
et al. (2009) could not be repeated with the more modern DDR3 RAM technology. Even

113

6 DRAM Scrambling

worse, the memory images obtained from cold booting DDR3 devices appeared to be
random for reasons inherent in that technology.
With the increasing speed of semiconductors, their undesirable parasitic effects also grow
in magnitude. Current spikes and electromagnetic interference in the speed categories of
DDR3 start to affect reliability and regulatory compliance. To counteract this, RAM
manufacturers in general and Intel, in particular, perform memory scrambling in DDR3
memory controllers. As we explain in this chapter (and as observed by Gruhn and Müller
(2013)), these scramblers severely limit the potential of forensic image acquisition. While
Lindenlauf, Höfken, and Schuba (2015) performed measurements of the remanence effect
magnitudes with DDR3 memory, they excluded a discussion of memory scrambling. So, to
the best of our knowledge, there is no published work which investigates the possibilities
of performing cold boot attacks on modern DDR3 systems in general, i.e., possibilities to
“descramble” the scrambler effects.
Zandwijk (2015) recently performed some related work using an analytic approach to
descrambling NAND flash chips. Their approach, however, is unfortunately not easily
transferable to RAM acquisition since they require error-free source bitstreams which
cannot be guaranteed for a cold boot process. Faintly related is also work by Rahmati et al.
(2012) which use the remanence effect constructively to increase the security of embedded
systems; they use the remanence effect as a means of timekeeping. For completeness, we
also mention work by Kim et al. (2014) because they also exploit physical properties of
RAM semiconductors to provoke bit flips within the RAM modules.
To summarize, the ramification of memory scrambling is currently not well understood,
and there is no general method of performing cold boot attacks on scrambled DDR3
memory. In this chapter, we present an in-depth analysis of DDR3 scrambling as
performed by the Intel memory controller and we show how to use this knowledge to
develop a practical method of descrambling such DDR3 memory in real-world scenarios.

6.1.1 Contributions

The contributions which we make in this chapter are as follows:

• We present a template attack on scrambled DDR3 memory systems which requires
64 bytes of known plaintext per memory channel (i.e., at most 128 bytes for a dual-
channel system) within the memory snapshot to yield complete descrambling of the
image.

• We refine this template attack by exploiting the mathematical relationships present
within the keystream to reduce the number of known plaintext bytes to only 25 (i.e.,
50 bytes for a dual-channel system).

• We present methods which can be used to deinterleave dual-channel memory and
give an algorithm which can construct an interleaved keystream of arbitrary length
from the subkeys for each channel.

114

6 DRAM Scrambling

We make the source code and documentation of our research freely available to the
community at https://www1.informatik.uni-erlangen.de/filepool/mem/
ddr3descramble.tar.gz.

6.1.2 Outline

We first give some necessary background information in Sect. 6.2, then precisely formulate
the problem of descrambling DDR3 memory in Sect. 6.3. Then we show how the problem
can be solved in Sect. 6.4 and present some experimental results confirming our findings
in Sect. 6.5. Finally, our conclusion is given in Sect. 6.6.

6.2 Background

We now give the background required to understand the technical aspects of the topic by
first explaining why scrambling is used and how it compares and contrasts to cryptographic
stream cipher encryption in Sect. 6.2.1. Then we proceed to show the mathematical
background of linear-feedback shift registers and their construction in hardware in
Sect. 6.2.2. The topic of DRAM and different peculiarities when operating DRAM
outside its specified operating range are covered in Sect. 6.2.3. Finally, in Sect. 6.2.4 we
build a bridge between these three topics: We give concrete implementation details of
Intel’s memory scrambling scheme and how it works internally.

6.2.1 Scrambling

Storage of bitstreams which are strongly biased towards zero or one can lead to a
multitude of practical problems: Modification of data within such a biased bitstream
can lead to comparatively high peak currents when bits are toggled. These current
spikes cause problems in electronic systems such as stronger electromagnetic emission and
decreased reliability. In contrast, when streams without DC-bias are used, the current
when working with those storage semiconductors is, on average, half of the expected
maximum.

Scrambling, also referred to as whitening, can be applied to biased bitstreams to remove
these undesirable side effects. In the simplest case, such a scrambler is a pseudo-random
binary sequence (PRBS) that is added onto the input bitstream using the exclusive
or (XOR) addition. We call these devices additive or synchronous scramblers. For the
receiving side, the inverse operation, descrambling, must be applied to get the original
content. A pleasant side effect of the XOR operation is that scrambling and descrambling
is symmetric; it effectively is the same operation.

From a signal processing perspective, a whitened signal has a smooth power distribution
over the allocated bandwidth. This means there are no special frequencies present which

115

https://www1.informatik.uni-erlangen.de/filepool/mem/ddr3descramble.tar.gz
https://www1.informatik.uni-erlangen.de/filepool/mem/ddr3descramble.tar.gz

6 DRAM Scrambling

have spikes in the power distribution and instead every part of the spectrum is utilized
equally well. Hardware constraints are sometimes also the reason to employ scrambling:
The Ethernet physical layer standard, for example, enforces strong galvanic isolation of
bus participants (IEEE Computer Society 2012). This is usually done using magnetics,
i.e., magnetic transformers. Transformers can only transport AC from one primary to
the secondary coil, however. Usage of transformers, in this case, is only possible because
the standard guarantees a bias-free signal — in the case of Ethernet, 8b/10b encoding is
used (Widmer and Franaszek 1983), but the principle remains the same.

Another reason to ensure signals are bias free is that this can enable clock recovery. If
the receiver can safely assume that a certain amount of state transitions occurs for a
given amount of transported data bits, then it is possible to omit the explicit clock and
let the receiver regenerate the clock from the received data stream. This complicates
the receiver but makes it possible that phase noise (jitter) is much less of a problem
than with synchronously clocked systems. All high-speed buses (USB, SATA, DRAM)
today use some form of clock recovery mechanism, albeit with much more sophisticated
techniques (Altera Inc. 2015; Hewlett-Packard Inc. et al. 2013; Micron Technology Inc.
2008).

6.2.2 Linear-feedback Shift Registers

The computing term register refers to a set of D-type (data type) flip-flop memory cells
which are clocked synchronously, i.e., latch the input data all at the same point in time.
A shift register is a special type of register in which the input of each flip-flop is fed from
the output of the next memory cell. Such a shift register with n stages has exactly one
feed data input, n state bits Q0..Qn−1 and out output bit Q0. Any bit that is fed into to
the input cycles through all flip-flops with each clock cycle until it comes out of the last
register after n cycles. Shift registers, therefore, have a first-in-first-out (FIFO) semantic.

If such a register is now fed back its output value, that is, if the output Q0 is connected
to the feed input of the flip-flop chain, the result is a feedback shift register. In such
a register, the content just revolves around, and the periodicity is at most n. Instead
of feeding back the output bit directly, one can feed back a linear combination of the
internal state instead. This creates a linear feedback shift register. The name precisely
describes its mode of operation: the feeding input is determined by a linear function
of the internal state. In practice, the linear function which is most commonly used to
combine the state bits is the exclusive or (XOR) function.

The maximum amount of different internal states such an LFSR cycles through when
it is continuously clocked after initialization to a nonzero state is called the period of
the LFSR. If an LFSR with a bit width of n bits has a period of 2n − 1 it is called
a maximum-length LFSR. Every non-trivial initialization of such a maximum-length
LFSR always causes the shift register to output the whole bitstream periodically; the
initialization state only determines the phase within the bitstream at which the stream
generation begins.

116

6 DRAM Scrambling

b1b5 b4 b3 b0b2 Out

Figure 6.1: Fibonacci-LFSR with polynomial x6 + x4 + x3 + x+ 1

b1b5 b4 b3 b0b2 Out

Figure 6.2: LFSR with polynomial x6 + x4 + x3 + x+ 1

Mathematically, this construction corresponds to polynomial division in finite fields. Let
G be a polynomial in F2 which we refer to as the generator :

g(x) : c0 + c1x+ c2x
2 + c3x

3 + ...+ cnx
n ci ∈ F2

Then select a second polynomial s which corresponds to the state of the LFSR. The
output sequence of the LFSR is given by the coefficients of the quotient b(x) of the two
polynomials:

b(x) = s(x)
g(x)

Mathematically, LFSRs can be modeled as polynomials over F2 in which the state bits
b0, . . . , bn−1 represented the polynomial coefficients. Clocking corresponds to repeated
multiplication of the whole polynomial with x and reduction modulo the characteristic
polynomial P of the LFSR.

For implementation in hardware, there are generally two semantically equivalent rep-
resentations of LFSRs. One is the Fibonacci variant, shown in Fig. 6.1 and the other
the Galois variant, shown in Fig. 6.2. Note that both produce the same bitstream, but
for the same internal state configuration, produce the sequence with some offset to each
other. This is because the state bits b0..bn−1 mathematically only indirectly relate to the
state bits of the numerator polynomial h. A detailed proof for this can be found with
Golomb et al. (1981) or Goresky and Klapper (2002). The reason why this is mentioned
here is the following: If for a given output sequence a0..an−1 and known characteristic
polynomial P the internal state needs to be determined, it is important to select the
correct model depending on the used algorithm; otherwise, the used algorithm does not
produce the desired results.

117

6 DRAM Scrambling

6.2.3 DRAM

As explained before, DRAM needs to be continuously refreshed to keep its content. For
modern DRAM generations such as DDR3, this process is implemented by logic within
the DRAM module itself (Micron Technology Inc. 2014). It is, however, triggered by the
host. In Intel systems, this is the task of the memory controller hub (MCH). While the
CPU and MCH were separate chips in early hardware generations, the MCH is completely
contained within modern CPUs.

When the retention time is exceeded — for example, because the DRAM chip is unpowered
— the stored charge of the capacitors slowly decays and the RAM takes its ground state.
The ground state is not a trivial pattern of, for example, all zero bits, but depends on the
physical construction of the chip itself. Namely, whether the statically connected sides
of the cells are biased against GND or the positive supply voltage, VDD. The memory
pattern that a DRAM chip, therefore, shows when it far exceeded its retention time is
heavily dependent on the physical semiconductor construction.

Another important aspect is the mapping between physical addresses and the physical
storage location within memory modules. When more than one memory module is present
in a computer, the RAM is usually operated in so-called dual-channel mode. In this
mode, consecutive data is alternated in a certain pattern between modules. This is done
for performance reasons, as it allows the use of two memory modules in parallel.

6.2.4 LFSR RAM Scrambling

As we have explained in Sect. 6.2.2, LFSRs are versatile building blocks that can be
implemented efficiently in hardware. Since the output bitstream of a well-chosen LFSR
has pseudo-random properties and is yet completely predictable when the internal state
is known, they are ideal for to achieve a pseudo-random bitstream (PRBS) in which each
bit appears with approximately equal probability. The resulting bitstream is said to be
DC-balanced or without DC bias. Since the goal of scrambling is only to achieve bias
removal, cryptographic requirements are not satisfied by a scrambling PRBS which has
been generated by an LFSR.

Concretely, we take a look at the actual process implemented by the MCH construction
of Intel. As the authors explain in the patent on the topic, their aim is to reduce both
electromagnetic interference (EMI) and current spikes by scrambling (Falconer, Mozak,
and Norman 2013; Mozak 2011).

To achieve this, they use a set of parallel LFSRs which generate a PRBS that is XORed
with the data. Therefore, the data on the memory bus appears to be random and ideally
exhibits no bit-bias. To be able to generate the PRBS for an arbitrary memory location,
a short secret value, the so-called seed, is chosen on first power-up. Upon a read or write
request to the RAM, this seed is mixed with the memory address to which the request
was made. Fig. 6.3 illustrates this process schematically. This combined value then serves

118

6 DRAM Scrambling

Memory Controller Hub (within CPU)

data

address

seed

LFSR

write

address

LFSR

data

read

scrambler

descrambler

memory bus DDR3
Memory Chip

write
request

read
request

Figure 6.3: Schematic display of a Intel DDR3 scrambler

as the parameterization of the LFSR that generates the PRBS for the requested memory
access. In this way, it is possible for the MCH to create the required PRBS for every
random memory request. While the Intel patent (Falconer, Mozak, and Norman 2013)
gives an example seed calculation in which only the lesser significant bits of the address
are involved to parameterize the localized PRBS, it is unclear if this is indeed the method
that is used in practice.

Note that when memory is operated in dual-channel mode, as explained in Sect. 6.2.3,
each of the two channels has its scrambler and both scramblers also usually have distinct
seed values. They are two completely independent hardware units.

During the boot process, the MCH is programmed by code that is part of the computer’s
firmware (i.e., the BIOS or UEFI). It is during this initialization that the MCH parameters
— including the scrambler configuration and scrambler seed — are programmed as well.
Therefore, a reseeding of the MCH scrambler can only occur when the computer is
performing a cold start (i.e., transitions from unpowered to powered state). In our trials,
the seed was never reset when the computer was merely rebooted using the reset button.

6.3 Problem Description

As mentioned in the introduction, one approach to performing image acquisition is
to reset the target computer by using the reset button (thereby not reinitializing any
memory scramblers) and boot from an alternative medium such as USB. Tools like the

119

6 DRAM Scrambling

memimage imaging software (Halderman et al. 2009) have a sufficiently small memory
footprint as to leave most of the memory contents intact. However, such attacks are
easily thwarted using BIOS passwords for example. The other approach is to transplant
the RAM module physically from the suspect’s computer into an acquisition computer
and perform image extraction on that second computer, as shown in Fig. 6.4. It is in this
case that scrambling comes into full effect since the RAM chip contains only scrambled
data and the acquisition computer cannot have the correct seed to replicate the original
keystream.

As shown in Fig. 6.3, all data that is passed to or from the DRAM chips is first passed
through the scrambler circuitry within the memory controller hub. It is transparently
scrambled when writing to and transparently descrambled when reading from RAM.
Therefore, at any point in time, the RAM module contains only a scrambled image M .
All connected peripherals are not aware that scrambling is even happening, but only
see the plain RAM image P . We refer to the scrambling data stream as K and the
connection between the three is simply an XOR relationship, just as with a stream cipher:
M = P ⊕K. When such an image is forensically acquired via means of cold booting, the
captured image is referred to as I. While during normal operation of the computer the
key K0 was used by the scrambler, during the image acquisition phase this key might be
K1, where K0 is not necessarily equal to K1. Fig. 6.4 shows this formally: During the
normal use, the plain image P is scrambled by K0 and the memory M consists of the
value K0 ⊕ P which resides in RAM:

P
K0−−−−−→

scramble
P ⊕K0 = M (6.1)

When the RAM module is transplanted to the analysis machine, generally the scrambling
key is different between the two systems. We denote the new key by K1. Subsequently,
during the acquisition phase, the descrambler adds K1 to the RAM image, yielding an
image

I = P ⊕K0 ⊕K1 = M ⊕K1
K1←−−−−−

descramble
M (6.2)

Therefore, in a cold boot scenario the descrambler does not do what the name suggests
(i.e., recover the original plaintext image), but instead actually adds another layer of
scrambling on top of the already scrambled image. During normal operation of the
computer, K0 is equal to K1 so that the keystreams cancel each other out and the
descrambler recovers the plaintext image.

Intel’s patent on their scrambler mechanics explains that a parallel LFSR is used to
generate the scrambler bitstream K. Therefore, it seems that decrypting such a scrambled
image would be a rather simple, straightforward task. Surprisingly enough, in practice,
it turns out to be more complicated than initially anticipated. This has a number of
reasons:

1. Nonexistent public documentation: All documentation that explains the registers
which are used by the memory controller hub (MCH) — the component that contains

120

6 DRAM Scrambling

target

P
scramble
Key K0

RAM

M = P ⊕K0

I = M ⊕K1 descramble

Key K1
M

transplant
acquisition
system

Figure 6.4: Scrambled storage of data and image acquisition

the scrambling unit — is non-public. Parts of the documentation which are publicly
available, such as the patents Intel has filed on the issue (Falconer, Mozak, and
Norman 2013; Mozak 2011), are worded as broadly as possible to include a plethora
of different options. It is unclear which one is used in practice.

2. Lossy image acquisition: Forensic image acquisition when using cold boot techniques
relies on the remanence effect of the semiconductors. This effect is neither guaranteed
nor reliable. Bit flips frequently occur as the DRAM cells lose their content. When
trying to reverse engineer the used scrambling mechanisms, this poses a problem since
algorithms like Berlekamp-Massey (Massey 1969) for the synthesis of an LFSR from
a given bitstream rely on perfect input data to produce correct results. When the
algorithms are fed noisy input, they do not indicate failure, but instead, synthesize
misleading output.

3. Unknown ground state: If the DRAM content of a chip which was inactive for a
long time, i.e., the ground state of that chip G, were known, then it would be easy
to determine the pure scrambler bitstream. We could perform a cold boot attack
on a machine that had been turned off for a long time. While then assuming that
M = G, we can determine K = G⊕ I, since for this machine the memory content
C would be equal to G and it would run through the descrambler during forensic
image acquisition. However, the ground state G is highly dependent on the actual
constitution of the hardware itself and forms a nontrivial pattern. Therefore, it is
difficult to gain access to the pure scrambling bitstream.

4. Interleaved memory: Lastly, most modern systems with more than one physical RAM
chip are configured to use dual channel mode to improve system performance. This
means that consecutive data is put on alternating RAM modules in an unknown
pattern. Since each channel has its own, completely separate scrambler instance, it
must be known which pieces of data have been scrambled by which unit to perform
descrambling for such images.

121

6 DRAM Scrambling

Outb5 b4b6b7b8b9b10 b1b3 b0b2b11

Figure 6.5: Galois-LFSR with polynomial x12 + x11 + x10 + x4 + 1

6.4 Towards Descrambling

We now describe an approach to descramble the contents of a DDR3 memory image that
was acquired using cold boot. The first steps which we describe are necessary to calculate
certain parameters of the hardware that are necessary for descrambling to work. These
steps can, however, also be performed after the memory image has been taken.

6.4.1 Practical LFSR Algorithms

During experimentation with the descrambler and to try to figure out how the internal
MCH construction could look like, we used several algorithms which are useful to
reproduce our findings. We briefly explain their function and how they are used.

def clk_lfsr_galois(state, width, poly):
assert(isinstance(state, int))
assert(isinstance(width, int))
assert(isinstance(poly, int))
outbit = state & 1
if not outbit:

newstate = state >> 1
else:

newstate = (state ^ poly) >> 1
return (outbit, newstate)

Listing 6.1: Python example for a Galois LFSR

As explained in Sect. 6.2.2, the Galois and Fibonacci construction of LFSRs are both
equivalent representations. However, to produce the same bit sequence, they need to be
initialized differently. In software, the Galois construction is easier to implement and
has better performance. For practical reasons we, therefore, only work with the Galois
representation. Note that our algorithms need to be adapted if you want to transfer our
results to Fibonacci LFSRs. List. 6.1 shows the basic clocking function which for a given
internal state of an LFSR with a given bit width n and polynomial returns the output
bit when clocked and the resulting next state.

122

6 DRAM Scrambling

The polynomial is given in integer representation in this case. Consider the Galois LFSR
given previously in Fig. 6.2 and a different one is shown in Fig. 6.5. The width of the
polynomial, i.e., 6 or 12 bits, for the shown LFSRs, respectively, determines the term
with the highest power. The other terms have a coefficient of one in those powers in
which a tap exists. For the first example, this is the case for bits 4, 3, 1, 0 while for the
second case the tap exponents are 11, 10, 4, 0. The resulting polynomial p in integer
representation for a list of exponents E is given as

p =
∑

2e ∀e ∈ E

To illustrate, p for the first LFSR would be 0x5b and it would be 0x1c11 for the second
one.

state = 0xada
width = 12
poly = sum(2 ** exponent for exponent in [12, 11, 10, 4, 0])
assert(poly == 0x1c11)
sequence = []
for i in range(48):

(outbit, state) = clk_lfsr_galois(state, width, poly)
sequence.append(outbit)

sequence_str = "".join(str(x) for x in sequence)
assert(sequence_str == "010111101010001110101100011000100111010110101110")

Listing 6.2: Usage of the LFSR functions

How this function can be used is shown in List. 6.2. For a given initialization value of
0xada, and the polynomial for the LFSR shown in Fig. 6.5, it produces the shown bit
sequence.

The reverse operation is performed by the function shown in List. 6.3. Once the
constitution — bit length n and polynomial — of an LFSR are known, a bit sequence
of length n can be fed to the function to recover the internal state at which the LFSR
produces that sequence.

The usage of this recovery function is shown in List. 6.4. Note that the first twelve
bits which were generated are now fed into the recovery function, and it successfully
recovers the original state 0xada. Keep in mind that a Fibonacci LFSR initialized to
0xada produces a different sequence, and the recovery function would have to be changed
to accommodate for this fact.

123

6 DRAM Scrambling

def galois_recover_state(width, poly, desired_seq):
assert(isinstance(width, int))
assert(isinstance(poly, int))
assert(len(desired_seq) == width)
assert(all(value in [0, 1] for value in desired_seq))
recovered_state = 1
mask = ((1 << width) - 1)
for attempt in range(width + 1):

Generate from the current state attempt
state = recovered_state
synth_seq = []
for i in range(width):

(outbit, state) = clk_lfsr_galois(state, width, poly)
synth_seq.append(outbit)

Calculate the disparity between desired output
and generated output
discrepancy = [(x ^ y) for (x, y)

in zip(desired_seq, synth_seq)]
try:

Find the bit offset of the first discrepancy
discr_bit = discrepancy.index(1)

except ValueError:
No discrepancy found, state is correct
break

Invert the state bits that cause the discrepancy
recovered_state ^= mask << discr_bit

else:
raise Exception("No state found that generates \

given bit sequence")
recovered_state &= mask
return recovered_state

Listing 6.3: Algorithm to recover internal state of a Galois LFSR

6.4.2 Calculating Memory Offsets

As mentioned before, the scrambler LFSR is parameterized by a global seed and (parts
of) the memory address that is accessed. It is, therefore, vital to know the exact physical
memory address of every byte in the acquired image. Unfortunately, not all acquisition
software works reliably; in fact, there are many examples in which areas of memory

124

6 DRAM Scrambling

(width, poly) = (12, 0x1c11)
sequence_str = "010111101010"
sequence = [int(x) for x in sequence_str]
state = galois_recover_state(width, poly, sequence)
assert(state == 0xada)

Listing 6.4: Usage of the function to recover the internal LFSR state

which are inaccessible are simply skipped instead of being correctly filled with padding
data (Vömel and Stüttgen 2013). When scanning through plaintext images to locate
cryptographic keys, this is not a problem. For our purposes, however, it is not only
important to get the data, but also important to be able to pinpoint the exact storage
location of that data. Only then can we select the correct keystream offset with which we
can descramble the image. To work around inherent limitations of acquisition software,
we wrote a custom data placer program to store the 64-bit physical address every 8 bytes
throughout all available memory. Then a soft reset was performed as not to reseed the
memory scrambler and a forensic image was created with the same software which would
later also capture the data images.

Note that using this approach we would also be able to determine the effects of memory
address scrambling when performing acquisition on transplanted memory. While this
was not the case in our experiments, there are indeed hints in literature that this would
be something that could be expected in the future (Gould 2009).

By examining these dumped images, it was easy to identify the locations where the
acquisition process was discontinuous. These discontinuities are referred to as hidden
memory regions (Stüttgen 2015; Stüttgen, Vömel, and Denzel 2015). This is expected, as
the BIOS memory map (which the acquisition software usually relies on) only loosely
correlates with the intricate details of the actual memory mapping (which the MCH uses).
As a consequence, such forensic images may contain holes within where hidden memory
regions were present. Capturing exactly where these discontinuities were located for any
given combination of computer and DRAM allowed us to calculate the actual address in
the original physical memory of a given offset within the dumped memory image file.

6.4.3 Distinguishing the Scrambler Type

Now we know which addresses in physical memory map to an acquired image file offset,
but we do not yet know about the scrambling behavior of the device under test at all.
We now show how it is possible to determine how the scrambler is configured by the
computer’s firmware.

Here is the procedure to distinguish the different scrambler types (see Fig. 6.6):

125

6 DRAM Scrambling

tim
e

captureRAM G⊕K0 I0

ensure ground state

captureRAM G⊕K1 I1

ensure ground state

Figure 6.6: Experimental setup for image recovery.

1. Turn the device completely off and leave it off for an extended period (e.g., 1 minute).
This ensures that the DRAM content is at its ground state G.

2. Turn the device on and immediately perform cold boot image acquisition.

3. Repeat these two steps twice to capture two independent cold boot images I0 and I1.

To determine the scrambler type, it is now sufficient to investigate the image content
which has not been modified by the BIOS or dumping software. (Note that the amount of
RAM that is overwritten by the BIOS on reboot needs to be evaluated on an individual
basis.) When analyzing this memory, there are three possible outcomes:

1. The two captured images I0 and I1 are identical (except for noise) and look non-
random. Long sequences of consecutive 0 and 1 bits are expected to be present in
the output. The details of the pattern depend on the physical hardware wiring of
the respective memory cells. This finding implies that scrambling is disabled on the
machine.

2. The captured images are identical (except for noise), but look random (i.e., equal
distribution of all bytes with approximately identical probability). This implies that
scrambling with a constant seed is used on the machine. Note that disabled scrambling
is a special case of constant scrambling, where the constant scrambling keystream
KC = 0.

3. The captured images look completely different, and also both look random. This
implies that scrambling with a random seed is used on the machine.

In our experiments, we did not find any machine which disabled the scrambling feature
altogether. However, there were machines of either of the two latter types. Which
type a machine belongs to is determined by the system firmware, as explained earlier in
Sect. 6.2.4. For example, we found a system consisting of an MSI H55M-P33 mainboard

126

6 DRAM Scrambling

with an Intel Core i5-760 CPU to use constant scrambling, while an Intel Core i3-3225
CPU within an MSI B75MA-P45 mainboard used random scrambling.

6.4.4 Attacking Constant Scrambling

Assume a machine that performs constant scrambling. For such a computer, descrambling
the memory contents is not necessary for most scenarios, since the scrambling and
descrambling key K is, as the name suggest, constant over power cycles. Therefore,
K = K0 = K1 and therefore I = P⊕K0⊕K1 = P . The intuitive reason is that scrambling
and descrambling cancel each other out on the same system when the keystream remains
the same for both. Therefore, if the forensic image acquisition is performed on the same
computer which also wrote the data into the RAM, the system can be treated as if there
were no scrambling used at all. This also applies to RAM that was transplanted from
one system to another one which uses the same firmware and therefore same, constant,
scrambler seed.

Unfortunately, in most practical cases the machine with which the image recovery was
performed is different from the computer which contains the forensically interesting data.
In such cases, things become more complicated. Fortunately, for all hardware that we
tested, the basic principle of how the scrambler works was always identical, so there is
a reason to assume that there currently is only one generation of scrambling hardware
available. This is also the case which we assume and deal with here. If the two computers
use different scrambler generations, the results could vary greatly depending on the exact
scrambler mechanisms which are employed.

Assuming that the two computers use at least the same scrambler generation and merely
differ in the parameterization (e.g., the host system uses constant scrambling with K0,
but the acquisition system uses a different keystream K1), then the captured image can
simply be treated as if it were created on a randomized scrambling system, as described
next.

6.4.5 Attacking Randomized Scrambling

Consider again the two images I0 and I1 from Fig. 6.6. They both capture the same,
unknown, ground state G with different scrambling keys applied to them. In other words,

I0 = K0 ⊕G and I1 = K1 ⊕G.

We can, therefore, apply a differential approach by constructing the image D

D = I0 ⊕ I1 = K0 ⊕G⊕K1 ⊕G = K0 ⊕K1

By eliminating the unknown ground state from the equation we now only deal with the
differential of two unknown keystreams. Since we know that the keystream is periodic, as

127

6 DRAM Scrambling

explained in Sect. 6.2.2, it can be written as the repeated concatenation of some unknown
partial keystream S (the subkey):

D = Sx

We then inspect chunks from this D of varying size (concretely, we used powers of two
from 32 . . . 1024). Using autocorrelation on these chunks we can identify the periodicity
π of S within D. To do this, we define an equality function on two bitstreams X,Y of
equal length:

X ≈ Y ⇐⇒ H(X ⊕ Y)
|X|

< ε

Here, H is the Hamming weight of a bit vector. Intuitively, we consider two bitstreams
X,Y to be approximately equal if and only if the average Hamming weight of their
bitwise difference is below a certain threshold ε. We group n of these chunks into an
equivalence class:

{C0, C1, . . . , Cn−1} with Ci ≈ Cj ∀ i, j ∈ {0, . . . , n− 1}

Once the periodicity π is selected correctly, only one equivalence class emerges with lots
of approximately equal differential subkey candidates Ci, all of length π. During our
experiments, we determined the smallest value for π at which this occurred to be 64
bytes.
Due to bit flips during the lossy acquisition, we still do not, however, know S. Under the
assumption that all candidates Ci are just deviations from S caused by random noise
during acquisition, we can calculate S by performing a majority vote on each bit sj of S:

sj =

0 if
n−1∑
i=0

Cij <
n
2

1 otherwise

As a result, we have the most likely subkey candidate S, where D = K0 ⊕K1 = Sx. We
can now use this information to recover P using a known plaintext attack.

6.4.6 Stencil Attack

From our measurements, we found that on all machines we investigated, the differential of
two keys K0 and K1 exhibited a 64-byte periodicity (i.e., π = 64). This directly enables
what we refer to as the stencil attack for DDR3 descrambling. The attack works as
follows:

1. Perform forensic recovery of the image that shall be descrambled. Without loss of
generality, the memory image content M of the image P is M = P ⊕K0. Here, K0 is
the keystream that is applied to the data by the scrambler unit on the target system.

2. The captured image is I = P ⊕K0 ⊕K1, with both K0 and K1 unknown. Note that
the descrambled image P is the information of actual forensic interest and K1 is the
keystream added by the descrambler unit on the acquisition system.

128

6 DRAM Scrambling

3. Therefore, I = P ⊕ (K0 ⊕K1) = P ⊕ D, where D is still unknown. However, we
know from Sect. 6.4.5 the periodicity π of D. Therefore, scan through the image I
at π-byte boundaries and cluster π-byte chunks together using the approximative
equality function described above. Select a partition that has lots of candidates: this
is likely to be a pattern of all 0x00. Construct the maximum likelihood candidate S
by majority vote.

4. Construct P = I ⊕ Sx ⊕ T x where T is the known plaintext. If the known plaintext
was a chunk of 0x00, i.e., T = 0 then P = I ⊕ Sx.

To reconstruct P , we therefore only need a known plaintext of length π, i.e., 64 bytes in
our case.

6.4.7 Mathematical Approach

The stencil attack allows an attack to be mounted against scrambled DDR3 memory,
effectively yielding the original image with relatively few pieces of known plaintext
required. However, we now look at the mathematical relationships within the differential
subkey stream with the purpose of constructing a keystream from less known plaintext.

In our approach we are limited to examination of a differential keystream K0 ⊕K1. This
is as an inherent limitation of performing acquisition with systems which contain an
active descrambler. During analysis, we found some interesting congruencies within this
differential keystream. First, we partitioned the 64-byte differential keystream stencil
into 32 values of 2 bytes each. Each value was interpreted as a little endian integer.
We ended up with 32 16-bit integer values v0, . . . , v31. We then were able to find three
16-byte polynomials p0, p1, p2 for which 24 congruencies hold for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 2:

((v4i+j >> 1)⊕ pj) & 0x7fff = v4i+j+1

If you recall Sect. 6.2.2, this relationship can immediately be recognized as a LFSR
relationship: Two related values, v4i+j and its adjacent word v4i+j+1 can be constructed
from each other when the first one is shifted right by one bit (>> 1) and then has the
LFSR polynomial added onto it (⊕ pj). Note however that in this congruence we can
only determine 15 of the 16 bits of the adjacent word (& 0x7fff). This is because it is
lost when the difference between two LFSR output streams is constructed.

These relationships are a useful additional method to confirm the validity of keystreams
and aid the search for a known plaintext in the differential memory snapshot D. It
reduces the number of known plaintext bits to less than 40% of the original stencil attack:
in our case, instead of 64 bytes we now need only (8+3) ·2+3 = 25 bytes if we exploit the
mathematical inter-stream relationships. Only the eight initial states v4i (16 bytes), the
three polynomials p0 . . . p3 (6 bytes) and the three most significant bits in every group of
8 bytes (total of 3 bytes) need to be known to construct the entire differential keystream.

129

6 DRAM Scrambling

6.4.8 Deinterleaving of Memory

As stated before in Sects. 6.2.3 and 6.2.4 a system with more than one DRAM module
usually operates in dual-channel mode to improve system performance. Each memory
channel has an independent scrambler, so the attack as described in Sect. 6.4.6 still works
when it is known which part of the memory image needs to be descrambled with which
channel key. In our experiments, we determined how the algorithm to split data between
channels works in Intel systems. Consider two channel subkeys A and B of 64 bytes each.
The two basic interleaved streams Q1 and R1, each of length 256 bytes, are defined to be:

Q1 = A2 ||B2

R1 = B2 ||A2

All further keystreams are then defined recursively:

Qn = Qn−1 ||R2
n−1 ||Qn−1

Rn = Rn−1 ||Q2
n−1 ||Rn−1

This definition can be applied until one finds a Qn of sufficient length. This Qn is then
the complete keystream K.
Since every channel subkey is 64 bytes in length, the length of an interleaved keystream
Qi is exactly:

|Qi| = 64 · 4i

Solving for i with given |Qi|:
i = log4

|Qi|
64

i.e., for a dual-channel memory system of 4 GiB, one would choose i = 13.
The interleaving pattern for i = 6, i.e., for 4096 streams of 64 bytes each, is graphically
shown in Fig. 6.7. It is exactly 64 by 64 tiles in size, and every color of the tile indicates
whether stream A or stream B is in effect. The stream order is shown left-to-right,
top-to-bottom.
With this knowledge, we can perform the stencil attack even when RAM is accessed
in dual channel mode. The acquired image I has to be deinterleaved into two channel
images IA and IB which can be treated independently before interleaving them back
together to form a plain image P .

6.5 Experimental Evaluation

6.5.1 Investigated Machines

Our measurements were performed predominantly on the Intel Core i3-3225 with an MSI
B75MA-P45 mainboard. We took care to verify that the results also apply to different
machines. In the process, we confirmed that our results also apply to the following
combination of CPUs and mainboards:

130

6 DRAM Scrambling

Figure 6.7: Dual channel interleaving graphically

• Intel i5-760/MSI H55M-P33

• i5-2520M/Dell 03PH4G

• i5-2400/Esprimo P900 E90+

6.5.2 Applying the Stencil Attack

In our experiments, we first started out with a single memory module present on the
target computers. We then used our data placer code to place 512x775 pixel grayscale
images of Mona Lisa at every 1 MiB boundary. At the space in between images, we
placed an easily recognizable, distinct pattern block.

We then froze the memory module by applying cooling spray to it until it had reached
around -30 °C. Then we cut power to the system by shutting it completely off and
restarted immediately afterward. The latency that our targets took from complete
shutdown to new boot-up ranged from around 2 to up to 5 seconds. We then drew
memory images using the memimage toolkit. By using the techniques described in
Sect. 6.4.6 we were able to recover the original memory image.

You can see the results of our experiments in Fig. 6.8. The first image, Fig. 6.8a shows
an image acquisition that was performed at operating temperature (about +30 °C). No
data could be recovered from this test, as everything was completely decayed.

On the second image, Fig. 6.8b, the image is shown when it was drawn from the target
after cooling to about -30 °C was applied. The basic shape of Mona Lisa is still visible,
but it is distorted by a repeating pattern. This repeating pattern is exactly the subkey
stencil which we need to apply to descramble the memory images. When this key is
unknown (because there is no known plaintext or at least no known plaintext yet) we did
a related data experiment, shown in Fig. 6.8c. For this, we make the assumption that

131

6 DRAM Scrambling

(a) Scrambled image captured at +30 °C (b) Scrambled
image captured at -30 °C

(c) Related-data descrambling (d) Stencil
descrambling

Figure 6.8: Images of descrambling single-channel memory

132

6 DRAM Scrambling

(a) Interleaved dual channels (b) Deinterleaved masked image

Figure 6.9: Images of descrambling dual-channel memory

consecutive 64-byte plaintexts — at least to some degree — repeat within the plaintext.
Therefore, the first 64-byte block was chosen as a stencil subkey. You can see clearly that
the image looks a lot better than the completely scrambled variant, but still has lots of
distortions.

Finally, we used the method described in Sect. 6.4.6 and recovered the most probable
key using majority vote and known plaintext. This key was then applied to the captured
image, yielding a result that was, except for the occasional bit error, very close to the
original image.

6.5.3 Dual Channel Mode and Decay Rate

During our experiments, we found the high decay rate of DDR3 RAM when at operating
temperature curious. To verify our hypothesis that the retention time of memory was
indeed much less than what can be seen in DDR2 counterparts, we performed an
experiment: We placed two memory modules in our target PC and took care that they
were operated in dual-channel mode. Then we placed the Mona Lisa images in RAM
using our data placer program. At this point in time, roughly every second 64-byte block
of the image is on one RAM module and every other 64-byte block is on the other RAM
module. We then inserted a rectangular piece of 500µm PET (polyethylene terephthalate)
in between the two RAM modules to achieve thermal isolation between them. One of
the two modules — but not the other — was then frozen by us before performing a cold
boot attack.

133

6 DRAM Scrambling

This experiment served a dual purpose: First, it allowed us to confirm that the thermal
dependence of DDR3 is as critical as we assumed it was. This is because the only
difference in the process was the temperature of the modules — all other parameters
like the power-down time were exactly identical. Secondly, it allowed us to confirm that
our algorithm to decode dual-channel memory, as explained in Sect. 6.4.8, worked as
expected.

The results are depicted in Fig. 6.9. On the left side, Fig. 6.9a shows the interleaved,
descrambled, memory image. The results verified our hypothesis: Approximately every
other row was completely decayed and shows up as white noise in the image. Even though
the image in Fig. 6.9a gives a rather noisy visual impression this noise is only present in
the parts that were acquired from the warm RAM module. This becomes obvious when
the noisy channel is masked out according to the algorithm we presented in Sect. 6.4.8.
The result is Fig. 6.9b, a successfully descrambled one-channel image of a RAM module
that was operated in dual-channel mode. The image shows virtually no noise because
our algorithm correctly masks out only the module which had decayed content.

6.5.4 Remanence Effect of DDR3 Memory

In their original paper, Halderman et al. (2009) found that DDR2 RAM exhibits a
comparatively strong remanence effect. They performed tests at operating temperature
and even without externally applied cooling to the chips, some DDR2 chips had decay
times of up to 35 seconds before showing complete data loss. To determine these values for
DDR3 memory, Lindenlauf, Höfken, and Schuba (2015) did similar decay measurements.
They found an astonishingly low bit error rate when the modules were cooled to a
temperature between -30 °C and -35 °C and kept the RAM modules unpowered for up to
50 seconds. It is not apparent, however, if these long decay times were also performed
with DDR3 memory or just with DDR2, and while they do show the dependence of the
decay rate on the die temperature for DDR2 memory they omit how these results transfer
to DDR3 memory.

In our experiments, we found DDR3 memory to be much less forgiving during cold
booting. Much in contrast to DDR2 memory it was essential for us to keep modules
always at low temperatures (around -30 °C) to produce usable results. We have observed
retention times of about 10 seconds before total decay occurred even when we applied
such cooling. At operating temperature (around +30 °C) we were not able to acquire a
single usable image because all data content had dissipated.

It is our assumption that this can be explained by the different types of memory modules
that were used by Lindenlauf, Höfken, and Schuba (ibid.) compared to ours. While
they used modules that were produced in 2011, we used slightly more recent modules
(produced 2013) that were also a bit faster (666 and 833 MHz types).

134

6 DRAM Scrambling

6.6 Conclusion and Outlook

Memory acquisition of DDR3 memory in the real world is more complicated than with a
laboratory setup: While in a lab setup researchers can choose systems which work for
their demonstration — systems which usually use constant scrambling — this luxury is
not available in a real-world scenario. On top of the intricacy of descrambling images
come practical aspects like dual-channel decoding. Both are obstacles that are not in
place to deter cold boot attacks, but they still complicate memory acquisition significantly
in practice.
We have demonstrated that our explanations and assumptions about the internal con-
struction of the Intel DRAM scrambler are in line with the observations we made from
our experimental results. Cracking a dual-channel system requires only 128 bytes of
known plaintext to apply our stencil method and only 50 bytes if the mathematical
approach is chosen. This is a negligible amount of data compared to the huge amount of
RAM that is present in the computer systems of today. Large chunks of the RAM usually
are set to zero during regular operation of a computer, be it either by the operating
system or by any running application. We further demonstrated that we could correctly
deinterleave RAM images. This is a prerequisite to correct descrambling of dual-channel
systems, as each channel has an independent scrambler.
Since the operation of memory scramblers is transparent for the system during normal
operation, it could well be possible that newer MCH revisions choose to use different
mechanisms for scrambling. Of particular interest for a forensic investigation would be if
our results can be applied to DDR4 memory as well. This is something we would like to
explore in future work.
To improve on our attack, it would be most interesting to mathematically attack the
generated keystream itself. Since our approach only works with differential streams we
at no point in time could reconstruct the original keystream — we only ever reconstruct
differential keystreams. Our ideas for future work are to utilize custom-built hardware
around an FPGA development board to be able to read out the raw keystream from a
cold booted DDR3 memory module. This would then enable brute forcing of keystreams
by trying different seeds, but it would also be an attack that would be significantly more
difficult than what we show in this chapter.
Investing this time would be interesting not only from an academical standpoint but
also because of the potential real-world implications. The reason that scramblers are
present in the first place is that Intel deemed it necessary to limit excessive current spikes
on the memory bus and in the memory modules. This leads us to believe that there
could be possibly exploitable detrimental effects if one could purposefully produce these
excessive current spikes. If the scrambling keystream were known to an attacker, this
could be leveraged from any unprivileged application to mount an attack which aims to
distort RAM integrity. Since disturbing RAM-integrity is a relevant topic and is receiving
increased attention after the inspiring row hammer attacks of Kim et al. (2014), this
might prove to be a worthwhile investment of time after all.

135

Chapter 7

Conclusion

Protecting hardware against physical attacks is a difficult task. Even though we can try
to protect secrets inside a microchip against unauthorized extractions — such secrets
can be cryptographic keys or intellectual property — then a sufficiently motivated and
equipped adversary is likely to be able to extract them eventually. Techniques such as
those reviewed and described by Giannuzzi and Stevie (1999) — utilization of a Focused
Ion Beam (FIB) — are tools which are extraordinarily powerful for an attacker. While
they are exceedingly expensive for a hobbyist budget, any decently equipped hardware
laboratory that does hardware analysis needs to have one to perform day-to-day tasks
effectively. Naturally, state-level actors are always in possession of this type of equipment.
So while an attacker might not be able to afford to buy one, such tools are not out of reach
for use. Moreover, even in the cases in which they are not in reach, small budget attacks
have become increasingly sophisticated as well. Attacks like that of C. Miller and Valasek
(2015) are executed exceptionally well. In their work, they hack the systems of a Jeep
Cherokee to the point where they can remotely control its driving. The publication got
much attention, primarily because the connected safety issues are immediately apparent.
A hacker with the possibility to drive your car into a ditch remotely can be a dangerous
adversary. However, it also serves as an example of the type of hackers which systems
need to be defended against; while undoubtedly skilled at what they do, the resources
they used to implement their hack were surprisingly undemanding. They needed no fancy
equipment, but just time, competence and determination.
It almost seems like attackers can compensate their lack of budget with creativity and new
approaches to crack systems open. For physical attacks, the adversary has an arbitrary
amount of time to prepare and think about ways to break into a system. Time, in this
case, works against the defensive side. An additional issue is that emergent technologies
can often be vulnerable by new attack vectors; one such example is the work of Jang and
Ghosh (2016). In their work, they explore attacks on RAM technology that internally
relies on ferromagnetic effects. Such RAM can be externally stimulated by magnetic
fields to show disturbances. It is easily imaginable how such hardware constraints can be
exploited by an adversary to extract cryptographic keys from a system that relies on this
technology.

7.1 Absence of a Security Silver Bullet

At the beginning of this thesis, we wrote about the difficulty of estimating a level of
security and designing a security system that fits the needs of its designer. Moreover,

136

7 Conclusion

again, the same that goes for all disciplines of engineering holds up here as well: There is
no silver bullet for the design of a system to become secure automatically. However, it is
easy to get the false impression that hardware security modules are such a silver bullet.
Unfortunately, this is too good to be true; while hardware security measures may have
the greatest theoretical potential for offering protection, it is difficult to decide objectively
what is fact and what are just hollow marketing claims. Since vendors of such hardware
deliberately try to keep the internals of their product a secret, adding to the difficulty of
getting accurate information. Unless a customer is prepared to buy a large quantity of
such security hardware, getting the right information is a painstakingly tedious process.

Another issue that surrounds the commercial implementation of hardware countermeasures
is that they are encumbered with patents like few other areas of security. This makes
employing such countermeasures costly for the vendor because of licensing fees. Instead
of paying the price, there is a shocking number of devices which are marketed under the
label “high security”, but which do not, for example, provide countermeasures against
differential power analysis. There is no denying that attacks like power analysis are
becoming more frequent and easy to conduct; the value of the work of O’Flynn and Chen
(2014) cannot be overstated to underline this fact. Consequently, this could mean that a
general-purpose microcontroller with software countermeasures against PA might offer
better protection than a supposedly “high security” device which does not offer these
countermeasures.

Also, real-world requirements of industry production may not be underestimated. Secure
hardware is one part of the jigsaw puzzle, but the surrounding equipment and processes
must at least meet that same level of protection. This means secure — usually proprietary
— hardware programming devices have to be acquired, and the firmware has to be stored
in them securely. These proprietary programming adapters can be costly and difficult
to acquire since the person who tries to order them usually needs to adhere strictly to
the silicon vendor’s protocol. For industry production, having a second source is also a
good argument against proprietary hardware security modules. Few, if any, proprietary
interfaces are the same in this sector. The manufacturer, therefore, puts all eggs in one
basket as soon as the particular security IC is part of the design. The whole production
relies on that chip being available by that one supplier. This dependency is the sword of
Damocles hanging over the manufacturing process because any delayed delivery of the
HSM ICs can grind the whole production to a halt.

All in all, hardware security modules surely are not the solution that automatically
ensures a system becomes immune to attacks. From a technical perspective, they do
have the advantage regarding potential defensive capabilities. However, there are other
constraints on the design of a secure system which might take priority. What it ultimately
boils down to is the type of attacker and the type of attack against which we are trying
to defend. Only as soon as this is clear, we can decide sensibly which measures are
appropriate to fulfill our constraints.

137

7 Conclusion

7.2 Security Silver Linings

While there is no simple “one size fits all” solution to defend against the exceeding
number of different attacks, there however still is a silver lining. Instead of surrendering
to the fact that even hobbyist hackers today are capable enough to hack systems of large
corporations, the focus should be to raise the bar for these attacks. In other words, while
the employed countermeasures are never able to defend against all attacks, they still
can be considered a significant improvement if they deter at least most of the attackers.
An example of this is the implementation of Sony’s PlayStation 3 security. While their
security was severely flawed and ultimately broken into by bushing et al. 2010 (sic), the
various layers of defense employed by Sony held up about four years. Considering that
the time between new console models is around six years, the countermeasures that were
used by Sony have been useful to at least some reasonable degree.

Again, it depends on the types of attacks that a system needs to be defended against and
choosing the appropriate countermeasures for that particular attacker model. To underline
this, we provide practical measures that can be used to harden the resistance of systems
against physical attacks. An approach like the one we showed in Chap. 2 is, for example,
useful to defend against passive attacks like power analysis. The concrete primitives
which we used to obfuscate power emission are just to be taken as one possible example;
the interesting part of our contribution is the versatility of our minimal virtual machine
approach. It can effortlessly be augmented by different types of code substitutions and
it can likewise be used for any architecture which allows code execution from runtime
writable memory since the actual VM code is completely agnostic to the underlying
assembly dialect. This means that our actual code to run the VM can be reused and
only the tools which run on the host and output the VM bytecode need to be adapted.

While it may seem trivial, timing attacks also offer great attack surface if the system
designed does not carefully avoid timing side channels. It, therefore, is advisable for the
defensive side to evaluate if such problems are present in the own design. To aid this, we
show how cycle accurate timing simulation can help to detect such issues. The Cortex-M
core emulator we introduce in Chap. 3 is meant to be used for exactly that purpose.
Our work highlights the complexity of modern microcontrollers and how nonintuitive
their timing behavior can be. Since it, therefore, is not a viable option to manually
check relevant code, our emulator takes that tedious task away from the user. It enables
the implementer to focus on the aspects which cannot automatically be determined:
Which functions are allowed to have variable runtime and which need to exhibit constant
runtime behavior in order not to compromise the system security.

As soon as the need arises to incorporate proprietary external hardware into a design to
further strengthen the overall security niveau, the difficulty of consolidating APIs, which
are frequently vastly different, arises. How we can solve such an issue from a technical
aspect is something we demonstrated in Chap. 5. While the concrete implementation is
something that is unique to both the protocol and hardware we are trying to use — in
our case, TLS-PSK with an Atmel HSM — the general ideas which we show apply to a

138

7 Conclusion

wide variety of different protocols and hardware. These ideas may serve as a template
for similar scenarios in which the designer of a system does not want to rely entirely on
the security of a general purpose microcontroller alone.

Lastly, one thing that was important for us to highlight is the duality of added complexity
and functionality on one hand and the relevance of secure external peripherals on the
other. For this, we explore the former in Chap. 4 in which we show how entirely benign
anti-EMI functionality could be abused by an adversary to create a covert channel which
is difficult to detect because it operates on the analog-digital signal encoding ambiguity.
The external peripherals which we analyze are DRAM chips within PC systems with an
Intel CPU – for these systems, as shown in Chap. 6, the memory content is usually stored
in scrambled form on the DRAM module itself. However, since the memory controller is
not meant to prevent descrambling, but just aims to provide basic debiasing of the input
data, we were able to descramble to memory contents and potentially use the knowledge
to leverage disturbance errors in RAM.

It is our belief that this work achieves two goals: Firstly, we would like to raise awareness
about the increasing simplicity with which physical attacks on embedded nodes can be
performed today. In our opinion, physical attacks are still an underestimated and rising
security risk and often unfairly disregarded as something that can only be accomplished
by experts. Secondly, we would like to see our ideas be used constructively to harden
embedded systems against physical attacks in scenarios in which — primarily due to
cost constraints — no similar hardening techniques could have been used. Since in
the upcoming years the number of deeply embedded nodes has been estimated to rise
tremendously this likewise means a great increase in additional attack surface. Protection
of this attack surface is something that we should not ignore — more importantly, it is
something we simply cannot afford to ignore.

139

Bibliography

Adrian, David, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew
Green, John Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé,
Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, and
Paul Zimmermann (2015). “Imperfect Forward Secrecy: How Diffie-Hellman Fails in
Practice”. In: 22nd ACM Conference on Computer and Communications Security—
CCS ’15. Denver, Colorado, USA: ACM, pp. 5–17. isbn: 978-1-450-33832-5. doi:
10.1145/2810103.2813707. url: https://dx.doi.org/10.1145/2810103.2813707.

Agosta, Giovanni, Alessandro Barenghi, and Gerardo Pelosi (2012). “A code morphing
methodology to automate power analysis countermeasures”. In: 49th Annual Design
Automation Conference—DAC ’12. New York, NY, USA: ACM, pp. 77–82. doi: 10.
1145/2228360.2228376. url: https://dx.doi.org/10.1145/2228360.2228376.

Agosta, Giovanni, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale (2015).
“The MEET Approach: Securing Cryptographic Embedded Software Against Side
Channel Attacks”. In: IEEE Transactions on CAD of Integrated Circuits and Systems
34.8, pp. 1320–1333. doi: 10.1109/TCAD.2015.2430320. url: https://dx.doi.org/
10.1109/TCAD.2015.2430320.

Agrawal, Dakshi, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi (2003). “The
EM Side-channel(s): Attacks and Assessment Methodologies”. In: 4th International
Workshop on Cryptographic Hardware and Embedded Systems—CHES 2002. Ed. by
Burton S. Kaliski, Çetin K. Koç, and Christof Paar. Berlin, Heidelberg, Germany:
Springer, pp. 29–45. isbn: 978-3-540-36400-9. doi: 10.1007/3-540-36400-5_4. url:
https://dx.doi.org/10.1007/3-540-36400-5_4.

Al Fardan, Nadhem J and Kenneth G Paterson (2013). “Lucky thirteen: Breaking the TLS
and DTLS record protocols”. In: IEEE Symposium on Security and Privacy—SP 2013.
IEEE, pp. 526–540. doi: 10.1109/SP.2013.42. url: https://dx.doi.org/10.1109/
SP.2013.42.

Altera Inc. (2015). External Memory Interface Handbook Volume 1: Altera Memory
Solution Overview and Design Flow. url: https://www.altera.com/literature/
hb/external-memory/emi.pdf.

American National Standards Institute (2001). ANSI X9.63 Public Key Cryptography
for the Financial Services Industry: Elliptic Curve Key Agreement and Key Transport
Schemes.

Antipa, Adrian, Daniel Brown, Alfred J Menezes, René Struik, and Scott A Vanstone
(2002). “Validation of elliptic curve public keys”. In: 6th International Workshop on

140

https://dx.doi.org/10.1145/2810103.2813707
https://dx.doi.org/10.1145/2810103.2813707
https://dx.doi.org/10.1145/2228360.2228376
https://dx.doi.org/10.1145/2228360.2228376
https://dx.doi.org/10.1145/2228360.2228376
https://dx.doi.org/10.1109/TCAD.2015.2430320
https://dx.doi.org/10.1109/TCAD.2015.2430320
https://dx.doi.org/10.1109/TCAD.2015.2430320
https://dx.doi.org/10.1007/3-540-36400-5_4
https://dx.doi.org/10.1007/3-540-36400-5_4
https://dx.doi.org/10.1109/SP.2013.42
https://dx.doi.org/10.1109/SP.2013.42
https://dx.doi.org/10.1109/SP.2013.42
https://www.altera.com/literature/hb/external-memory/emi.pdf
https://www.altera.com/literature/hb/external-memory/emi.pdf

Bibliography

Practice and Theory in Public Key Cryptography—PKC 2003. Ed. by Yvo G. Desmedt.
Berlin, Heidelberg, Germany: Springer, pp. 211–223. isbn: 978-3-540-36288-3. doi:
10.1007/3-540-36288-6_16. url: https://dx.doi.org/10.1007/3-540-36288-
6_16.

Aoki, Kazumaro, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang (2009).
“Preimages for step-reduced SHA-2”. In: Advances in Cryptology—ASIACRYPT 2009:
15th International Conference on the Theory and Application of Cryptology and In-
formation Security. Ed. by Mitsuru Matsui. Berlin, Heidelberg, Germany: Springer,
pp. 578–597. isbn: 978-3-642-10366-7. doi: 10.1007/978-3-642-10366-7_34. url:
https://dx.doi.org/10.1007/978-3-642-10366-7_34.

Appelbaum, Jacob, Judith Horchert, and Christian Stöcker (2013). “Shopping for Spy
Gear: Catalog Advertises NSA Toolbox”. In: Spiegel Online International. url: http://
www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-
for-numerous-devices-a-940994.html.

ARM Ltd. (2010). Cortex-M4 Technical Reference Manual Revision r0 Part p0. url:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_
cortex_m4_r0p0_trm.pdf.

ARM Ltd. (2014). ARMv7-M Architecture Reference Manual DDI 0403E.b (ID 120114).
url: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403e.b/.

Atmel Inc. (2015a). ATECC508A CryptoAuthentication summary datasheet. url: http://
www.atmel.com/images/atmel-8923s-cryptoauth-atecc508a-datasheet-summary.
pdf.

Atmel Inc. (2015b). ATSHA204A CryptoAuthentication datasheet. url: http://www.
atmel.com/Images/Atmel-8885-CryptoAuth-ATSHA204A-Datasheet.pdf.

Atmel Inc. (2016). ATECC108A CryptoAuthentication summary datasheet. url: http://
www.atmel.com/Images/Atmel-8895S-CryptoAuth-ATECC108A-Datasheet-Summary.
pdf.

Aumasson, Jean-Philippe (2006). On the pseudo-random generator ISAAC. IACR Cryp-
tology ePrint Archive, Report 2006/438. url: http://eprint.iacr.org/2006/438.

Aviram, Nimrod, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel,
Jens Steube, Luke Valenta, David Adrian, John Alex Halderman, Viktor Dukhovni,
Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval Shavitt
(2016). “DROWN: Breaking TLS using SSLv2”. In: 25th USENIX Security Symposium—
USENIX Security 16. url: https://drownattack.com/drown-attack-paper.pdf.

Babar, Sachin, Antonietta Stango, Neeli Prasad, Jaydip Sen, and Ramjee Prasad (2011).
“Proposed embedded security framework for Internet of Things (IoT)”. In: 2nd Inter-

141

https://dx.doi.org/10.1007/3-540-36288-6_16
https://dx.doi.org/10.1007/3-540-36288-6_16
https://dx.doi.org/10.1007/3-540-36288-6_16
https://dx.doi.org/10.1007/978-3-642-10366-7_34
https://dx.doi.org/10.1007/978-3-642-10366-7_34
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403e.b/
http://www.atmel.com/images/atmel-8923s-cryptoauth-atecc508a-datasheet-summary.pdf
http://www.atmel.com/images/atmel-8923s-cryptoauth-atecc508a-datasheet-summary.pdf
http://www.atmel.com/images/atmel-8923s-cryptoauth-atecc508a-datasheet-summary.pdf
http://www.atmel.com/Images/Atmel-8885-CryptoAuth-ATSHA204A-Datasheet.pdf
http://www.atmel.com/Images/Atmel-8885-CryptoAuth-ATSHA204A-Datasheet.pdf
http://www.atmel.com/Images/Atmel-8895S-CryptoAuth-ATECC108A-Datasheet-Summary.pdf
http://www.atmel.com/Images/Atmel-8895S-CryptoAuth-ATECC108A-Datasheet-Summary.pdf
http://www.atmel.com/Images/Atmel-8895S-CryptoAuth-ATECC108A-Datasheet-Summary.pdf
http://eprint.iacr.org/2006/438
https://drownattack.com/drown-attack-paper.pdf

Bibliography

national Conference on Wireless Communication, Vehicular Technology, Information
Theory and Aerospace & Electronic Systems Technology—Wireless VITAE 2011. IEEE,
pp. 1–5. doi: 10.1109/WIRELESSVITAE.2011.5940923. url: https://dx.doi.org/
10.1109/WIRELESSVITAE.2011.5940923.

Badra, M. (2009). Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES
Galois Counter Mode (RFC5487). doi: 10.17487/rfc5487. url: https://tools.
ietf.org/rfc/rfc5487.txt.

Bagci, Ibrahim Ethem, Mohammad Pourmirza, Shahid Raza, Utz Roedig, and Thiemo
Voigt (2012). “Codo: Confidential data storage for wireless sensor networks”. In: 9th

International Conference on Mobile Adhoc and Sensor Systems—MASS 2012. IEEE,
pp. 1–6. doi: 10.1109/MASS.2012.6708508. url: https://dx.doi.org/10.1109/
MASS.2012.6708508.

Barker, Elaine (2016). Recommendation for Key Management - Part 1: General (Revision
4). NIST Special Publication 800-57 Part 1, Revision 4. url: http://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf.

Bauer, Johannes and Felix C Freiling (2015). “Schutz eingebetteter Systeme gegen physis-
che Angriffe”. In: DACH Security 2015 – Bestandsaufnahme - Konzepte - Anwendungen
- Perspektiven. Bonn, Germany: syssec-Verlag, pp. 387–396. isbn: 978-3-000-49965-4.

Bauer, Johannes and Felix C Freiling (2016). “Towards Cycle-Accurate Emulation of
Cortex-M Code to Detect Timing Side Channels”. In: 11th International Conference on
Availability, Reliability and Security—ARES 2016. IEEE. doi: 10.1109/ARES.2016.94.
url: https://dx.doi.org/10.1109/ARES.2016.94.

Bauer, Johannes, Michael Gruhn, and Felix C Freiling (2016). “Lest we forget: Cold-boot
attacks on scrambled DDR3 memory”. In: Digital Investigation 16, S65–S74. doi:
10.1016/j.diin.2016.01.009. url: https://dx.doi.org/10.1016/j.diin.2016.
01.009.

Bauer, Johannes, Sebastian Schinzel, Felix C Freiling, and Andreas Dewald (2016a).
“Information Leakage behind the Curtain: Abusing Anti-EMI Features for Covert
Communication”. In: IEEE International Symposium on Hardware Oriented Secu-
rity and Trust—HOST 2016, pp. 130–134. doi: 10.1109/HST.2016.7495570. url:
https://dx.doi.org/10.1109/HST.2016.7495570.

Bauer, Johannes, Sebastian Schinzel, Felix C Freiling, and Andreas Dewald (2016b).
Information Leakage behind the Curtain: Abusing Anti-EMI Features for Covert Com-
munication. Tech. rep. CS-2016-03. University of Erlangen, Department of Computer
Science 1. urn: urn:nbn:de:bvb:29-opus4-71576. url: https://nbn-resolving.
org/urn:nbn:de:bvb:29-opus4-71576.

142

https://dx.doi.org/10.1109/WIRELESSVITAE.2011.5940923
https://dx.doi.org/10.1109/WIRELESSVITAE.2011.5940923
https://dx.doi.org/10.1109/WIRELESSVITAE.2011.5940923
https://dx.doi.org/10.17487/rfc5487
https://tools.ietf.org/rfc/rfc5487.txt
https://tools.ietf.org/rfc/rfc5487.txt
https://dx.doi.org/10.1109/MASS.2012.6708508
https://dx.doi.org/10.1109/MASS.2012.6708508
https://dx.doi.org/10.1109/MASS.2012.6708508
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://dx.doi.org/10.1109/ARES.2016.94
https://dx.doi.org/10.1109/ARES.2016.94
https://dx.doi.org/10.1016/j.diin.2016.01.009
https://dx.doi.org/10.1016/j.diin.2016.01.009
https://dx.doi.org/10.1016/j.diin.2016.01.009
https://dx.doi.org/10.1109/HST.2016.7495570
https://dx.doi.org/10.1109/HST.2016.7495570
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-71576
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-71576
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-71576

Bibliography

Bayrak, Ali Galip, Francesco Regazzoni, David Novo, Philip Brisk, François-Xavier
Standaert, and Paolo Ienne (2015). “Automatic Application of Power Analysis Coun-
termeasures”. In: IEEE Transactions on Computers 64.2, pp. 329–341. issn: 0018-9340.
doi: 10.1109/TC.2013.219. url: https://dx.doi.org/10.1109/TC.2013.219.

Bernstein, Daniel J (2005). Cache-timing attacks on AES. url: https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf.

Beurdouche, Benjamin, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Four-
net, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindo-
houe (2015). “A messy state of the union: Taming the composite state machines of
TLS”. In: IEEE Symposium on Security and Privacy—SP 2015. IEEE, pp. 535–552.
doi: 10.1109/SP.2015.39. url: https://dx.doi.org/10.1109/SP.2015.39.

Bitmain Technologies Ltd. (2016). AntMiner S7 Manual. url: https://www.bitmaintech.
com/files/download/Antminer+S7+user+guide.pdf.

Blake-Wilson, Simon, Nelson Bolyard, Vipul Gupta, Chris Hawk, and Bodo Möller (2006).
Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)
(RFC4492). doi: 10.17487/rfc4492. url: https://tools.ietf.org/rfc/rfc4492.
txt.

Bogdanov, Andrey, Dmitry Khovratovich, and Christian Rechberger (2011). “Biclique
cryptanalysis of the full AES”. In: Advances in Cryptology—ASIACRYPT 2011: 17th

International Conference on the Theory and Application of Cryptology and Information
Security. Ed. by Dong Hoon Lee and Xiaoyun Wang. Berlin, Heidelberg, Germany:
Springer, pp. 344–371. isbn: 978-3-642-25385-0. doi: 10.1007/978-3-642-25385-0_19.
url: https://dx.doi.org/10.1007/978-3-642-25385-0_19.

Bracewell, Ronald (1999). The Fourier Transform and its Applications. 3rd. McGraw-Hill
Publishing Company. isbn: 978-0-071-16043-8.

Brachmann, Martina, Sye Loong Keoh, Óscar García-Morchón, and Sandeep S Kumar
(2012). “End-to-end transport security in the IP-Based Internet of Things”. In: 21st

International Conference on Computer Communications and Networks—ICCCN 2012.
IEEE, pp. 1–5. doi: 10.1109/ICCCN.2012.6289292. url: https://dx.doi.org/10.
1109/ICCCN.2012.6289292.

Brier, Eric, Christophe Clavier, and Francis Olivier (2004). “Correlation power analysis
with a leakage model”. In: 6th International Workshop on Cryptographic Hardware
and Embedded Systems—CHES 2004. Ed. by Marc Joye and Jean-Jacques Quisquater.
Berlin, Heidelberg, Germany: Springer, pp. 16–29. isbn: 978-3-540-28632-5. doi: 10.
1007/978-3-540-28632-5_2. url: https://dx.doi.org/10.1007/978-3-540-
28632-5_2.

143

https://dx.doi.org/10.1109/TC.2013.219
https://dx.doi.org/10.1109/TC.2013.219
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://dx.doi.org/10.1109/SP.2015.39
https://dx.doi.org/10.1109/SP.2015.39
https://www.bitmaintech.com/files/download/Antminer+S7+user+guide.pdf
https://www.bitmaintech.com/files/download/Antminer+S7+user+guide.pdf
https://dx.doi.org/10.17487/rfc4492
https://tools.ietf.org/rfc/rfc4492.txt
https://tools.ietf.org/rfc/rfc4492.txt
https://dx.doi.org/10.1007/978-3-642-25385-0_19
https://dx.doi.org/10.1007/978-3-642-25385-0_19
https://dx.doi.org/10.1109/ICCCN.2012.6289292
https://dx.doi.org/10.1109/ICCCN.2012.6289292
https://dx.doi.org/10.1109/ICCCN.2012.6289292
https://dx.doi.org/10.1007/978-3-540-28632-5_2
https://dx.doi.org/10.1007/978-3-540-28632-5_2
https://dx.doi.org/10.1007/978-3-540-28632-5_2
https://dx.doi.org/10.1007/978-3-540-28632-5_2

Bibliography

Bucci, Marco, Michele Guglielmo, Raimondo Luzzi, and Alessandro Trifiletti (2004). “A
power consumption randomization countermeasure for DPA-resistant cryptographic
processors”. In: 14th International Workshop on Integrated Circuit and System Design.
Power and Timing Modeling, Optimization and Simulation—PATMOS 2004. Ed. by
Enrico Macii, Vassilis Paliouras, and Odysseas Koufopavlou. Springer, pp. 481–490.
isbn: 978-3-540-30205-6. doi: 10.1007/978-3-540-30205-6_50. url: https://dx.
doi.org/10.1007/978-3-540-30205-6_50.

bushing, marcan, segher, and sven (2010). “Console Hacking 2010 — PS3 Epic Fail”.
In: 27th Chaos Communication Congress—27C3. url: https://events.ccc.de/
congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf.

Cabuk, Serdar, Carla E Brodley, and Clay Shields (2004). “IP covert timing channels:
Design and detection”. In: 11th ACM Conference on Computer and Communications
Security—CCS ’04. Washington DC, USA: ACM, pp. 178–187. isbn: 978-1-581-13961-7.
doi: 10.1145/1030083.1030108. url: https://dx.doi.org/10.1145/1030083.
1030108 (visited on 09/21/2012).

Clavier, Christophe, Jean-Sébastien Coron, and Nora Dabbous (2000). “Differential power
analysis in the presence of hardware countermeasures”. In: 2nd International Workshop
on Cryptographic Hardware and Embedded Systems—CHES 2000. Ed. by Çetin K. Koç
and Christof Paar. Berlin, Heidelberg, Germany: Springer, pp. 252–263. isbn: 978-3-540-
44499-2. doi: 10.1007/3-540-44499-8_20. url: https://dx.doi.org/10.1007/3-
540-44499-8_20.

Copeland, Jack (2010). Colossus: The secrets of Bletchley Park’s code-breaking computers.
Oxford University Press. isbn: 978-0-199-57814-6.

Coron, Jean-Sébastien (1999). “Resistance against differential power analysis for elliptic
curve cryptosystems”. In: 1st International Workshop on Cryptographic Hardware and
Embedded Systems—CHES 1999. Ed. by Çetin K. Koç and Christof Paar. Berlin,
Heidelberg, Germany: Springer, pp. 292–302. isbn: 978-3-540-48059-4. doi: 10.1007/3-
540-48059-5_25. url: https://dx.doi.org/10.1007/3-540-48059-5_25.

Coron, Jean-Sébastien and Louis Goubin (2000). “On Boolean and Arithmetic Masking
against Differential Power Analysis”. English. In: 2nd International Workshop on
Cryptographic Hardware and Embedded Systems—CHES 2000. Ed. by Çetin K. Koç
and Christof Paar. Vol. 1965. Lecture Notes in Computer Science. Berlin, Heidelberg,
Germany: Springer, pp. 231–237. isbn: 978-3-540-41455-1. doi: 10.1007/3- 540-
44499-8_18. url: https://dx.doi.org/10.1007/3-540-44499-8_18.

Croucher, John S (2006). “Collecting coupons — a mathematical approach”. In: Australian
Senior Mathematics Journal 20.2, pp. 31–35. issn: 0819-4564. doi: 1959.14/14137.
url: https://dx.doi.org/1959.14/14137.

144

https://dx.doi.org/10.1007/978-3-540-30205-6_50
https://dx.doi.org/10.1007/978-3-540-30205-6_50
https://dx.doi.org/10.1007/978-3-540-30205-6_50
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://dx.doi.org/10.1145/1030083.1030108
https://dx.doi.org/10.1145/1030083.1030108
https://dx.doi.org/10.1145/1030083.1030108
https://dx.doi.org/10.1007/3-540-44499-8_20
https://dx.doi.org/10.1007/3-540-44499-8_20
https://dx.doi.org/10.1007/3-540-44499-8_20
https://dx.doi.org/10.1007/3-540-48059-5_25
https://dx.doi.org/10.1007/3-540-48059-5_25
https://dx.doi.org/10.1007/3-540-48059-5_25
https://dx.doi.org/10.1007/3-540-44499-8_18
https://dx.doi.org/10.1007/3-540-44499-8_18
https://dx.doi.org/10.1007/3-540-44499-8_18
https://dx.doi.org/1959.14/14137
https://dx.doi.org/1959.14/14137

Bibliography

Daemen, Joan and Vincent Rijmen (1999). “Resistance against implementation attacks: A
comparative study of the AES proposals”. In: The Second AES Candidate Conference,
pp. 122–132. url: http://csrc.nist.gov/archive/aes/round1/conf2/papers/
daemen.pdf.

Dhem, Jean-François, François Koeune, Philippe-Alexandre Leroux, Patrick Mestré,
Jean-Jacques Quisquater, and Jean-Louis Willems (1998). “A practical implementation
of the timing attack”. In: url: https://www.uclouvain.be/crypto/services/
download/publications.pdf.ba2a6ad854f479a8.7064663137332e706466.pdf.

Dhem, Jean-François, François Koeune, Philippe-Alexandre Leroux, Patrick Mestré,
Jean-Jacques Quisquater, and Jean-Louis Willems (2000). “A practical implementation
of the timing attack”. In: Third International Conference on Smart Card Research
and Applications—CARDIS ’98. Ed. by Jean-Jacques Quisquater and Bruce Schneier.
Springer, pp. 167–182. isbn: 978-3-540-44534-0. doi: 10.1007/10721064_15. url:
https://dx.doi.org/10.1007/10721064_15.

Dierks, Tim and Eric Rescorla (2008). The Transport Layer Security (TLS) Protocol
Version 1.2 (RFC5246). doi: 10.17487/rfc5246. url: https://tools.ietf.org/
rfc/rfc5246.txt.

Dietrich, Christian J, Christian Rossow, Felix C Freiling, Herbert Bos, Maarten van Steen,
and Norbert Pohlmann (2011). “On Botnets that use DNS for Command and Control”.
In: 7th European Conference on Computer Network Defense—EC2ND ’11. Washington,
DC, USA: IEEE, pp. 9–16. isbn: 978-0-769-54762-6. doi: 10.1109/EC2ND.2011.16.
url: https://dx.doi.org/10.1109/EC2ND.2011.16.

Diffie, Whitfield and Martin E Hellman (1976). “New directions in cryptography”. In:
IEEE Transactions on Information Theory 22.6, pp. 644–654. doi: 10.1109/TIT.1976.
1055638. url: https://dx.doi.org/10.1109/TIT.1976.1055638.

Duong, Thai and Juliano Rizzo (2011). Here come the ⊕ ninjas. url: http://netifera.
com/research/beast/beast_DRAFT_0621.pdf.

Eisenbarth, Thomas, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salmasizadeh,
and Mohammad T Manzuri Shalmani (2008). “On the power of power analysis in the
real world: A complete break of the KeeLoq code hopping scheme”. In: Advances
in Cryptology—CRYPTO 2008: 28th Annual International Cryptology Conference.
Berlin, Heidelberg, Germany: Springer, pp. 203–220. isbn: 978-3-540-85174-5. doi:
10.1007/978-3-540-85174-5_12. url: https://dx.doi.org/10.1007/978-3-540-
85174-5_12.

Eronen, Pasi and Hannes Tschofenig (2005). Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS) (RFC4279). doi: 10.17487/rfc4279. url: https://tools.
ietf.org/rfc/rfc4279.txt.

145

http://csrc.nist.gov/archive/aes/round1/conf2/papers/daemen.pdf
http://csrc.nist.gov/archive/aes/round1/conf2/papers/daemen.pdf
https://www.uclouvain.be/crypto/services/download/publications.pdf.ba2a6ad854f479a8.7064663137332e706466.pdf
https://www.uclouvain.be/crypto/services/download/publications.pdf.ba2a6ad854f479a8.7064663137332e706466.pdf
https://dx.doi.org/10.1007/10721064_15
https://dx.doi.org/10.1007/10721064_15
https://dx.doi.org/10.17487/rfc5246
https://tools.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/rfc/rfc5246.txt
https://dx.doi.org/10.1109/EC2ND.2011.16
https://dx.doi.org/10.1109/EC2ND.2011.16
https://dx.doi.org/10.1109/TIT.1976.1055638
https://dx.doi.org/10.1109/TIT.1976.1055638
https://dx.doi.org/10.1109/TIT.1976.1055638
http://netifera.com/research/beast/beast_DRAFT_0621.pdf
http://netifera.com/research/beast/beast_DRAFT_0621.pdf
https://dx.doi.org/10.1007/978-3-540-85174-5_12
https://dx.doi.org/10.1007/978-3-540-85174-5_12
https://dx.doi.org/10.1007/978-3-540-85174-5_12
https://dx.doi.org/10.17487/rfc4279
https://tools.ietf.org/rfc/rfc4279.txt
https://tools.ietf.org/rfc/rfc4279.txt

Bibliography

Falconer, Maynard C., Christopher P. Mozak, and Adam J. Norman (2013). Suppressing
power supply noise using data scrambling in double data rate memory systems. U.S.
Patent 8,503,678. url: http://www.google.com.ar/patents/US8503678.

Fan, Zhong, Russell J. Haines, and Parag Kulkarni (2014). “M2M communications for
E-health and smart grid: an industry and standard perspective”. In: IEEE Wireless
Communications 21.1, pp. 62–69. doi: 10.1109/MWC.2014.6757898. url: https://
dx.doi.org/10.1109/MWC.2014.6757898.

Farag, Mohammed M., Lee W. Lerner, and Cameron D. Patterson (2012). “Interact-
ing with Hardware Trojans over a network”. In: IEEE International Symposium on
Hardware Oriented Security and Trust—HOST 2012. IEEE, pp. 69–74. isbn: 978-1-
467-32341-3. doi: 10.1109/HST.2012.6224323. url: https://dx.doi.org/10.1109/
HST.2012.6224323.

Flajolet, Philippe, Danièle Gardy, and Loÿs Thimonier (1992). “Birthday paradox,
coupon collectors, caching algorithms and self-organizing search”. In: Discrete Applied
Mathematics 39.3, pp. 207–229. doi: 10.1016/0166-218X(92)90177-C. url: https://
dx.doi.org/10.1016/0166-218X(92)90177-C.

Gandolfi, Karine, Christophe Mourtel, and Francis Olivier (2001). “Electromagnetic
analysis: Concrete results”. In: 3rd International Workshop on Cryptographic Hardware
and Embedded Systems—CHES 2001. Ed. by Çetin K. Koç, David Naccache, and
Christof Paar. Berlin, Heidelberg, Germany: Springer, pp. 251–261. isbn: 978-3-540-
44709-2. doi: 10.1007/3-540-44709-1_21. url: https://dx.doi.org/10.1007/3-
540-44709-1_21.

Genkin, Daniel, Lev Pachmanov, Itamar Pipman, and Eran Tromer (2015). Stealing Keys
from PCs using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation.
IACR Cryptology ePrint Archive, Report 2015/170. url: http://eprint.iacr.org/
2015/170.

Genkin, Daniel, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom (2016).
ECDSA Key Extraction from Mobile Devices via Nonintrusive Physical Side Channels.
IACR Cryptology ePrint Archive, Report 2016/230. url: http://eprint.iacr.org/
2016/230.

Genkin, Daniel, Itamar Pipman, and Eran Tromer (2014). “Get Your Hands Off My
Laptop: Physical Side-Channel Key-Extraction Attacks on PCs”. In: 16th International
Workshop on Cryptographic Hardware and Embedded Systems—CHES 2014. Ed. by
Lejla Batina and Matthew Robshaw. Berlin, Heidelberg, Germany: Springer, pp. 242–
260. isbn: 978-3-662-44709-3. doi: 10.1007/978-3-662-44709-3_14. url: https://
dx.doi.org/10.1007/978-3-662-44709-3_14.

146

http://www.google.com.ar/patents/US8503678
https://dx.doi.org/10.1109/MWC.2014.6757898
https://dx.doi.org/10.1109/MWC.2014.6757898
https://dx.doi.org/10.1109/MWC.2014.6757898
https://dx.doi.org/10.1109/HST.2012.6224323
https://dx.doi.org/10.1109/HST.2012.6224323
https://dx.doi.org/10.1109/HST.2012.6224323
https://dx.doi.org/10.1016/0166-218X(92)90177-C
https://dx.doi.org/10.1016/0166-218X(92)90177-C
https://dx.doi.org/10.1016/0166-218X(92)90177-C
https://dx.doi.org/10.1007/3-540-44709-1_21
https://dx.doi.org/10.1007/3-540-44709-1_21
https://dx.doi.org/10.1007/3-540-44709-1_21
http://eprint.iacr.org/2015/170
http://eprint.iacr.org/2015/170
http://eprint.iacr.org/2016/230
http://eprint.iacr.org/2016/230
https://dx.doi.org/10.1007/978-3-662-44709-3_14
https://dx.doi.org/10.1007/978-3-662-44709-3_14
https://dx.doi.org/10.1007/978-3-662-44709-3_14

Bibliography

Genkin, Daniel, Adi Shamir, and Eran Tromer (2014). “RSA Key Extraction via Low-
Bandwidth Acoustic Cryptanalysis”. In: Advances in Cryptology—CRYPTO 2014:
34th Annual International Cryptology Conference. Ed. by Juan A. Garay and Rosario
Gennaro. Berlin, Heidelberg, Germany: Springer, pp. 444–461. isbn: 978-3-662-44371-2.
doi: 10.1007/978-3-662-44371-2_25. url: https://dx.doi.org/10.1007/978-3-
662-44371-2_25.

Giannuzzi, Lucille A. and Frederick A. Stevie (1999). “A review of focused ion beam
milling techniques for TEM specimen preparation”. In: Micron 30.3, pp. 197–204. doi:
10.1016/S0968-4328(99)00005-0. url: https://dx.doi.org/10.1016/S0968-
4328(99)00005-0.

Gianvecchio, Steven and Haining Wang (2007). “Detecting covert timing channels: An
entropy-based approach”. In: 14th ACM Conference on Computer and Communications
security—CCS ’07. Alexandria, Virginia, USA: ACM, pp. 307–316. isbn: 978-1-595-
93703-2. doi: 10.1145/1315245.1315284. url: https://dx.doi.org/10.1145/
1315245.1315284 (visited on 11/29/2012).

Giffin, John, Rachel Greenstadt, Peter Litwack, and Richard Tibbetts (2003). “Covert
messaging through TCP timestamps”. In: 2nd International Conference on Privacy
Enhancing Technologies—PET ’02. Ed. by Roger Dingledine and Paul Syverson. San
Francisco, CA, USA: Springer, pp. 194–208. isbn: 978-3-540-36467-2. doi: 10.1007/3-
540-36467-6_15. url: https://dx.doi.org/10.1007/3-540-36467-6_15.

Gilbert, Henri and Helena Handschuh (2004). “Security analysis of SHA-256 and sisters”.
In: 10th Annual International Workshop on Selected Areas in Cryptography—SAC 2003.
Ed. by Mitsuru Matsui and Robert J. Zuccherato. Berlin, Heidelberg, Germany:
Springer, pp. 175–193. isbn: 978-3-540-24654-1. doi: 10.1007/978-3-540-24654-
1_13. url: https://dx.doi.org/10.1007/978-3-540-24654-1_13.

Golomb, Solomon W, Lloyd R Welch, Richard M Goldstein, and Alfred W Hales (1981).
Shift register sequences. Aegean Park Press, Laguna Hills, CA. isbn: 978-0-894-12048-0.

Goodspeed, Travis (2008). “A side-channel timing attack of the MSP430 BSL”. In: Black
Hat 2008. Las Vegas, NV, USA. url: https://www.blackhat.com/presentations/
bh-usa-08/Goodspeed/BH_US_08_Goodspeed_Side-channel_Timing_Attacks_
White_Paper.pdf.

Goresky, Mark and Andrew M Klapper (2002). “Fibonacci and Galois representations
of feedback-with-carry shift registers”. In: IEEE Transactions on Information Theory
48.11, pp. 2826–2836. doi: 10.1109/TIT.2002.804048. url: https://dx.doi.org/
10.1109/TIT.2002.804048.

147

https://dx.doi.org/10.1007/978-3-662-44371-2_25
https://dx.doi.org/10.1007/978-3-662-44371-2_25
https://dx.doi.org/10.1007/978-3-662-44371-2_25
https://dx.doi.org/10.1016/S0968-4328(99)00005-0
https://dx.doi.org/10.1016/S0968-4328(99)00005-0
https://dx.doi.org/10.1016/S0968-4328(99)00005-0
https://dx.doi.org/10.1145/1315245.1315284
https://dx.doi.org/10.1145/1315245.1315284
https://dx.doi.org/10.1145/1315245.1315284
https://dx.doi.org/10.1007/3-540-36467-6_15
https://dx.doi.org/10.1007/3-540-36467-6_15
https://dx.doi.org/10.1007/3-540-36467-6_15
https://dx.doi.org/10.1007/978-3-540-24654-1_13
https://dx.doi.org/10.1007/978-3-540-24654-1_13
https://dx.doi.org/10.1007/978-3-540-24654-1_13
https://www.blackhat.com/presentations/bh-usa-08/Goodspeed/BH_US_08_Goodspeed_Side-channel_Timing_Attacks_White_Paper.pdf
https://www.blackhat.com/presentations/bh-usa-08/Goodspeed/BH_US_08_Goodspeed_Side-channel_Timing_Attacks_White_Paper.pdf
https://www.blackhat.com/presentations/bh-usa-08/Goodspeed/BH_US_08_Goodspeed_Side-channel_Timing_Attacks_White_Paper.pdf
https://dx.doi.org/10.1109/TIT.2002.804048
https://dx.doi.org/10.1109/TIT.2002.804048
https://dx.doi.org/10.1109/TIT.2002.804048

Bibliography

Gould, Geoffrey A. (2009). Address scrambling to simplify memory controller’s address
output multiplexer. U.S. Patent 7,493,467. url: http://www.google.com/patents/
US7493467.

Gruhn, Michael and Tilo Müller (2013). “On the Practicability of Cold Boot Attacks”.
In: 8th International Conference on Availability, Reliability and Security—ARES 2013.
IEEE Computer Society, pp. 390–397. isbn: 978-0-769-55008-4. doi: 10.1109/ARES.
2013.52. url: https://dx.doi.org/10.1109/ARES.2013.52.

Halderman, John Alex, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten
(2009). “Lest we remember: cold-boot attacks on encryption keys”. In: Communications
of the ACM 52.5, pp. 91–98. doi: 10.1145/1506409.1506429. url: https://dx.doi.
org/10.1145/1506409.1506429.

Hamamoto, Takeshi, Soichi Sugiura, and Shizuo Sawada (1998). “On the retention time
distribution of dynamic random access memory (DRAM)”. In: IEEE Transactions on
Electron Devices 45.6, pp. 1300–1309. doi: 10.1109/16.678551. url: https://dx.
doi.org/10.1109/16.678551.

Herbst, Christoph, Elisabeth Oswald, and Stefan Mangard (2006). “An AES Smart Card
Implementation Resistant to Power Analysis Attacks”. In: 4th International Conference
on Applied Cryptography and Network Security—ACNS 2006. Ed. by Jianying Zhou,
Moti Yung, and Feng Bao. Berlin, Heidelberg, Germany: Springer, pp. 239–252. isbn:
978-3-540-34704-0. doi: 10.1007/11767480_16. url: https://dx.doi.org/10.1007/
11767480_16.

Hewlett-Packard Inc., Intel Inc., Microsoft Inc., Renesas Electronics Inc., ST-Ericsson,
and Texas Instruments Inc. (2013). USB 3.1 Specification Revision 1.0. url: http://
www.usb.org/developers/docs/usb_31_052016.zip.

Iakymchuk, Taras, Maciej Nikodem, and Krzysztof Kepa (2011). “Temperature-based
covert channel in FPGA systems”. In: 6th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip—ReCoSoC 2011. IEEE, pp. 1–7. isbn: 978-1-
457-70640-0. doi: 10.1109/ReCoSoC.2011.5981510. url: https://dx.doi.org/10.
1109/ReCoSoC.2011.5981510.

IEEE Computer Society (2012). IEEE 802 Part 3-2008: IEEE Standard for Ethernet,
section 1. IEEE Computer Society. url: http://standards.ieee.org/getieee802/
download/802.3-2012_section1.pdf.

Intel Inc. (2012a). Intel 64 and IA-32 Architectures Software Developer’s Manual –
Volume 2: Instruction Set Reference.

148

http://www.google.com/patents/US7493467
http://www.google.com/patents/US7493467
https://dx.doi.org/10.1109/ARES.2013.52
https://dx.doi.org/10.1109/ARES.2013.52
https://dx.doi.org/10.1109/ARES.2013.52
https://dx.doi.org/10.1145/1506409.1506429
https://dx.doi.org/10.1145/1506409.1506429
https://dx.doi.org/10.1145/1506409.1506429
https://dx.doi.org/10.1109/16.678551
https://dx.doi.org/10.1109/16.678551
https://dx.doi.org/10.1109/16.678551
https://dx.doi.org/10.1007/11767480_16
https://dx.doi.org/10.1007/11767480_16
https://dx.doi.org/10.1007/11767480_16
http://www.usb.org/developers/docs/usb_31_052016.zip
http://www.usb.org/developers/docs/usb_31_052016.zip
https://dx.doi.org/10.1109/ReCoSoC.2011.5981510
https://dx.doi.org/10.1109/ReCoSoC.2011.5981510
https://dx.doi.org/10.1109/ReCoSoC.2011.5981510
http://standards.ieee.org/getieee802/download/802.3-2012_section1.pdf
http://standards.ieee.org/getieee802/download/802.3-2012_section1.pdf

Bibliography

Intel Inc. (2012b). Transistors to Transformations – From Sand to Circuits – How Intel
Makes Chips. url: http://www.intel.com/content/dam/www/public/us/en/
documents/corporate-information/museum-transistors-to-transformations-
brochure.pdf.

Jang, Jae-Won and Swaroop Ghosh (2016). “Performance Impact of Magnetic and
Thermal Attack on STTRAM and Low-Overhead Mitigation Techniques”. In: 16th

ACM/IEEE International Symposium on Low Power Electronics and Design—
ISLPED ’16. San Francisco, California, USA: ACM.

Ji, Liping, Wenhao Jiang, Benyang Dai, and Xiamu Niu (2009). “A Novel Covert Channel
Based on Length of Messages”. In: International Symposium on Information Engineer-
ing and Electronic Commerce—IEEC ’09. IEEE, pp. 551–554. isbn: 978-0-769-53686-6.
doi: 10.1109/IEEC.2009.122. url: https://dx.doi.org/10.1109/IEEC.2009.122
(visited on 10/08/2012).

Johnson, Don, Alfred J Menezes, and Scott A Vanstone (2001). “The elliptic curve digital
signature algorithm (ECDSA)”. In: International Journal of Information Security 1.1,
pp. 36–63. issn: 1615-5262. doi: 10.1007/s102070100002. url: https://dx.doi.
org/10.1007/s102070100002.

Josefsson, S. (2003). The Base16, Base32, and Base64 Data Encodings (RFC3548). doi:
10.17487/rfc3548. url: https://tools.ietf.org/rfc/rfc3548.txt.

Jr., Robert J. Jenkins (1996). “ISAAC”. In: 3rd International Workshop on Fast Software
Encryption—FSE 1996. Ed. by Dieter Gollmann. Vol. 1039. Lecture Notes in Computer
Science. Springer, pp. 41–49. isbn: 978-3-540-60865-3. doi: 10.1007/3-540-60865-
6_41. url: https://dx.doi.org/10.1007/3-540-60865-6_41.

Kelsey, John, Bruce Schneier, David Wagner, and Chris Hall (1998). “Side channel
cryptanalysis of product ciphers”. In: 5th European Symposium on Research in Computer
Security—ESORICS ’98. Ed. by Jean-Jacques Quisquater, Yves Deswarte, Catherine
Meadows, and Dieter Gollmann. Springer, pp. 97–110. doi: 10.1007/BFb0055858.
url: https://dx.doi.org/10.1007/BFb0055858.

Kemmerer, Richard A. (1983). “Shared Resource Matrix Methodology: An Approach
to Identifying Storage and Timing Channels”. In: ACM Transactions on Computer
Systems 1.3, pp. 256–277. issn: 0734-2071. doi: 10 . 1145 / 357369 . 357374. url:
https://dx.doi.org/10.1145/357369.357374.

Khovratovich, Dmitry, Christian Rechberger, and Alexandra Savelieva (2012). “Bicliques
for preimages: attacks on Skein-512 and the SHA-2 family”. In: 19th International
Workshop on Fast Software Encryption—FSE 2012. Ed. by Anne Canteaut. Springer,
pp. 244–263. isbn: 978-3-642-34047-5. doi: 10.1007/978-3-642-34047-5_15. url:
https://dx.doi.org/10.1007/978-3-642-34047-5_15.

149

http://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/museum-transistors-to-transformations-brochure.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/museum-transistors-to-transformations-brochure.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/museum-transistors-to-transformations-brochure.pdf
https://dx.doi.org/10.1109/IEEC.2009.122
https://dx.doi.org/10.1109/IEEC.2009.122
https://dx.doi.org/10.1007/s102070100002
https://dx.doi.org/10.1007/s102070100002
https://dx.doi.org/10.1007/s102070100002
https://dx.doi.org/10.17487/rfc3548
https://tools.ietf.org/rfc/rfc3548.txt
https://dx.doi.org/10.1007/3-540-60865-6_41
https://dx.doi.org/10.1007/3-540-60865-6_41
https://dx.doi.org/10.1007/3-540-60865-6_41
https://dx.doi.org/10.1007/BFb0055858
https://dx.doi.org/10.1007/BFb0055858
https://dx.doi.org/10.1145/357369.357374
https://dx.doi.org/10.1145/357369.357374
https://dx.doi.org/10.1007/978-3-642-34047-5_15
https://dx.doi.org/10.1007/978-3-642-34047-5_15

Bibliography

Kim, Yoongu, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu (2014). “Flipping bits in memory without
accessing them: An experimental study of DRAM disturbance errors”. In: 41st In-
ternational Symposium on Computer Architecuture—ISCA 2014. IEEE, pp. 361–372.
doi: 10.1109/ISCA.2014.6853210. url: https://dx.doi.org/10.1109/ISCA.2014.
6853210.

King, Samuel T., Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and
Yuanyuan Zhou (2008). “Designing and implementing malicious hardware”. In: 1st

USENIX Workshop on Large-scale Exploits and Emergent Threats—LEET ’08. Berkeley,
CA, USA: USENIX Association, 5:1–5:8. url: http://dl.acm.org/citation.cfm?
id=1387709.1387714.

Kipling, Rudyard (1897). “Recessional”. In: The Times. July 17, 1897.

Koblitz, Neal (1987). “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177, pp. 203–209. issn: 1088-6842. doi: 10.1090/S0025-5718-1987-0866109-5.
url: https://dx.doi.org/10.1090/S0025-5718-1987-0866109-5.

Koblitz, Neal and Alfred J Menezes (2015). A riddle wrapped in an enigma. IACR
Cryptology ePrint Archive, Report 2015/1018. url: http://eprint.iacr.org/2015/
1018.

Kocher, Paul C (1995). “Cryptanalysis of Diffie-Hellman, RSA, DSS, and Other Sys-
tems Using Timing Attacks (Extended Abstract)”. In: Advances in Cryptology—
CRYPTO ’95: 15th Annual International Cryptology Conference. Springer, pp. 21–
31.

Kocher, Paul C (1996). “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems”. In: Advances in Cryptology—CRYPTO ’96: 16th Annual
International Cryptology Conference. Ed. by Neal Koblitz. Springer, pp. 104–113. isbn:
978-3-540-68697-2. doi: 10.1007/3-540-68697-5_9. url: https://dx.doi.org/10.
1007/3-540-68697-5_9.

Kocher, Paul C, Joshua Jaffe, and Benjamin Jun (1999). “Differential power analysis”.
In: Advances in Cryptology—CRYPTO ’99: 19th Annual International Cryptology
Conference. Ed. by Michael Wiener. Vol. 1666. Lecture Notes in Computer Science.
Berlin, Heidelberg, Germany: Springer, pp. 388–397. isbn: 978-3-540-48405-9. doi:
10.1007/3-540-48405-1_25. url: https://dx.doi.org/10.1007/3-540-48405-
1_25.

Kong, Jingfei, Onur Aciiçmez, Jean-Pierre Seifert, and Huiyang Zhou (2008). “Decon-
structing new cache designs for thwarting software cache-based side channel attacks”.
In: 2nd ACM Workshop on Computer Security Architectures—CSAW ’08. New York,

150

https://dx.doi.org/10.1109/ISCA.2014.6853210
https://dx.doi.org/10.1109/ISCA.2014.6853210
https://dx.doi.org/10.1109/ISCA.2014.6853210
http://dl.acm.org/citation.cfm?id=1387709.1387714
http://dl.acm.org/citation.cfm?id=1387709.1387714
https://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
https://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
http://eprint.iacr.org/2015/1018
http://eprint.iacr.org/2015/1018
https://dx.doi.org/10.1007/3-540-68697-5_9
https://dx.doi.org/10.1007/3-540-68697-5_9
https://dx.doi.org/10.1007/3-540-68697-5_9
https://dx.doi.org/10.1007/3-540-48405-1_25
https://dx.doi.org/10.1007/3-540-48405-1_25
https://dx.doi.org/10.1007/3-540-48405-1_25

Bibliography

NY, USA: ACM, pp. 25–34. doi: 10.1145/1456508.1456514. url: https://dx.doi.
org/10.1145/1456508.1456514.

Krawczyk, Hugo, Mihir Bellare, and Ran Canetti (1997). HMAC: Keyed-Hashing for
Message Authentication (RFC2104). doi: 10.17487/rfc2104. url: https://tools.
ietf.org/rfc/rfc2104.txt.

Lampson, Butler W. (1973). “A note on the confinement problem”. In: Communications
of the ACM 16.10, pp. 613–615. doi: 10.1145/362375.362389. url: https://dx.
doi.org/10.1145/362375.362389 (visited on 10/08/2012).

Law, Laurie, Alfred J Menezes, Minghua Qu, Jerry Solinas, and Scott A Vanstone
(2003). “An efficient protocol for authenticated key agreement”. In: Designs, Codes
and Cryptography 28.2, pp. 119–134. issn: 1573-7586. doi: 10.1023/A:1022595222606.
url: https://dx.doi.org/10.1023/A:1022595222606.

Lindenlauf, Simon, Hans Höfken, and Marko Schuba (2015). “Cold Boot Attacks on DDR2
and DDR3 SDRAM”. In: 10th International Conference on Availability, Reliability
and Security—ARES 2015. IEEE, pp. 287–292. doi: 10.1109/ARES.2015.28. url:
https://dx.doi.org/10.1109/ARES.2015.28.

Liu, Jamie, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu (2013). “An
experimental study of data retention behavior in modern DRAM devices: Implications
for retention time profiling mechanisms”. In: ACM SIGARCH Computer Architecture
News 41.3, pp. 60–71. doi: 10.1145/2508148.2485928. url: https://dx.doi.org/
10.1145/2508148.2485928.

Liu, Yali, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz,
and Stefan Katzenbeisser (2009). “Hide and Seek in Time — Robust Covert Tim-
ing Channels”. In: 14th European Symposium on Research in Computer Security—
ESORICS 2009. Ed. by Michael Backes and Peng Ning. Vol. 5789. Lecture Notes in
Computer Science. Berlin, Heidelberg, Germany: Springer, pp. 120–135. isbn: 978-
3-642-04443-4. doi: 10.1007/978-3-642-04444-1. url: https://dx.doi.org/10.
1007/978-3-642-04444-1.

Mangard, Stefan (2004). “Hardware countermeasures against DPA — a statistical analysis
of their effectiveness”. In: Topics in Cryptology—CT-RSA 2004: The Cryptographers’
Track at the RSA Conference 2004. Ed. by Tatsuaki Okamoto. Springer, pp. 222–235.
isbn: 978-3-540-24660-2. doi: 10.1007/978-3-540-24660-2_18. url: https://dx.
doi.org/10.1007/978-3-540-24660-2_18.

Mangard, Stefan, Elisabeth Oswald, and Thomas Popp (2007). Power analysis attacks:
Revealing the secrets of smart cards. Boston, MA, USA: Springer, pp. 119–165. isbn:
978-0-387-38162-6. doi: 10.1007/978-0-387-38162-6_6. url: https://dx.doi.
org/10.1007/978-0-387-38162-6_6.

151

https://dx.doi.org/10.1145/1456508.1456514
https://dx.doi.org/10.1145/1456508.1456514
https://dx.doi.org/10.1145/1456508.1456514
https://dx.doi.org/10.17487/rfc2104
https://tools.ietf.org/rfc/rfc2104.txt
https://tools.ietf.org/rfc/rfc2104.txt
https://dx.doi.org/10.1145/362375.362389
https://dx.doi.org/10.1145/362375.362389
https://dx.doi.org/10.1145/362375.362389
https://dx.doi.org/10.1023/A:1022595222606
https://dx.doi.org/10.1023/A:1022595222606
https://dx.doi.org/10.1109/ARES.2015.28
https://dx.doi.org/10.1109/ARES.2015.28
https://dx.doi.org/10.1145/2508148.2485928
https://dx.doi.org/10.1145/2508148.2485928
https://dx.doi.org/10.1145/2508148.2485928
https://dx.doi.org/10.1007/978-3-642-04444-1
https://dx.doi.org/10.1007/978-3-642-04444-1
https://dx.doi.org/10.1007/978-3-642-04444-1
https://dx.doi.org/10.1007/978-3-540-24660-2_18
https://dx.doi.org/10.1007/978-3-540-24660-2_18
https://dx.doi.org/10.1007/978-3-540-24660-2_18
https://dx.doi.org/10.1007/978-0-387-38162-6_6
https://dx.doi.org/10.1007/978-0-387-38162-6_6
https://dx.doi.org/10.1007/978-0-387-38162-6_6

Bibliography

Massey, James L (1969). “Shift-register synthesis and BCH decoding”. In: IEEE Trans-
actions on Information Theory 15.1, pp. 122–127. doi: 10.1109/TIT.1969.1054260.
url: https://dx.doi.org/10.1109/TIT.1969.1054260.

McGrew, D. and D. Bailey (2012). AES-CCM Cipher Suites for Transport Layer Security
(TLS) (RFC6655). doi: 10.17487/rfc6655. url: https://tools.ietf.org/rfc/
rfc6655.txt.

McGrew, D., K. Igoe, and M. Salter (2011). Fundamental Elliptic Curve Cryptography
Algorithms (RFC6090). doi: 10.17487/rfc6090. url: https://tools.ietf.org/
rfc/rfc6090.txt.

Menezes, Alfred J, Paul C van Oorschot, and Scott A Vanstone (1996). Handbook
of Applied Cryptography. CRC Press. isbn: 978-0-849-38523-0. url: http://cacr.
uwaterloo.ca/hac/.

Messerges, Thomas S (2001). “Securing the AES Finalists Against Power Analysis
Attacks”. In: 7th International Workshop on Fast Software Encryption—FSE 2000.
Ed. by Gerhard Goos, Juris Hartmanis, and Bruce van Leeuwen Jan and Schneier.
Berlin, Heidelberg, Germany: Springer, pp. 150–164. isbn: 978-3-540-44706-1. doi:
10.1007/3-540-44706-7_11. url: https://dx.doi.org/10.1007/3-540-44706-
7_11.

Messerges, Thomas S, Ezzat A Dabbish, and Robert H Sloan (2002). “Examining smart-
card security under the threat of power analysis attacks”. In: IEEE Transactions on
Computers 51.5, pp. 541–552. doi: 10.1109/TC.2002.1004593. url: https://dx.
doi.org/10.1109/TC.2002.1004593.

Metzger, P. and W. Simpson (1995). IP Authentication using Keyed MD5 (RFC1828).
doi: 10.17487/rfc1828. url: https://tools.ietf.org/rfc/rfc1828.txt.

Micron Technology Inc. (2008). TN-04-56: Dealing with DDR2/DDR3 Clock Jitter
Introduction. url: https:/ / www . micron . com / ~ / media / documents / products /
technical-note/dram/tn0456_clock_jitter.pdf.

Micron Technology Inc. (2014). DDR3 SDRAM Datasheet for MT41J256M4, MT41J128M4
and MT41J64M4. url: https://www.micron.com/~/media/documents/products/
data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf.

Miller, Charlie and Chris Valasek (2015). Remote exploitation of an unaltered passenger
vehicle. url: http://illmatics.com/Remote%5C%20Car%5C%20Hacking.pdf.

Miller, John Milton (1919). “Dependence of the input impedance of a three-electrode
vacuum tube upon the load in the plate circuit”. In: vol. 351. Scientific papers of the
Bureau of Standards. United States Government Printing Office, pp. 367–385. doi:

152

https://dx.doi.org/10.1109/TIT.1969.1054260
https://dx.doi.org/10.1109/TIT.1969.1054260
https://dx.doi.org/10.17487/rfc6655
https://tools.ietf.org/rfc/rfc6655.txt
https://tools.ietf.org/rfc/rfc6655.txt
https://dx.doi.org/10.17487/rfc6090
https://tools.ietf.org/rfc/rfc6090.txt
https://tools.ietf.org/rfc/rfc6090.txt
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
https://dx.doi.org/10.1007/3-540-44706-7_11
https://dx.doi.org/10.1007/3-540-44706-7_11
https://dx.doi.org/10.1007/3-540-44706-7_11
https://dx.doi.org/10.1109/TC.2002.1004593
https://dx.doi.org/10.1109/TC.2002.1004593
https://dx.doi.org/10.1109/TC.2002.1004593
https://dx.doi.org/10.17487/rfc1828
https://tools.ietf.org/rfc/rfc1828.txt
https://www.micron.com/~/media/documents/products/technical-note/dram/tn0456_clock_jitter.pdf
https://www.micron.com/~/media/documents/products/technical-note/dram/tn0456_clock_jitter.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
http://illmatics.com/Remote%5C%20Car%5C%20Hacking.pdf

Bibliography

10.1016/S0016-0032(19)90474-1. url: https://dx.doi.org/10.1016/S0016-
0032(19)90474-1.

Miller, Victor (1986). “Use of elliptic curves in cryptography”. In: Advances in Cryptology—
CRYPTO ’85: 5th Annual International Cryptology Conference. Berlin, Heidelberg,
Germany: Springer, pp. 417–426. isbn: 978-3-540-39799-1. doi: 10.1007/3- 540-
39799-X_31. url: https://dx.doi.org/10.1007/3-540-39799-X_31.

Modadugu, Nagendra and Eric Rescorla (2004). “The Design and Implementation of
Datagram TLS”. In: Network and Distributed System Security Symposium—NDSS 2004.
The Internet Society. isbn: 978-1-891-56218-1.

Möller, Bodo, Thai Duong, and Krzysztof Kotowicz (2014). This POODLE bites: exploiting
the SSL 3.0 fallback. Google Inc. url: https://www.openssl.org/~bodo/ssl-
poodle.pdf.

Moore, Simon W, Ross Anderson, Paul Cunningham, Robert Mullins, and George Taylor
(2002). “Improving smart card security using self-timed circuits”. In: 8th International
Symposium on Asynchronous Circuits and Systems—ASYNC 2002. IEEE, pp. 211–218.
doi: 10.1109/ASYNC.2002.1000311. url: https://dx.doi.org/10.1109/ASYNC.
2002.1000311.

Moskowitz, Ira S. and Myong H. Kang (1994). “Covert channels–here to stay?” In:
9th Annual Confererence on Computer Assurance—COMPASS ’94, pp. 235–243. doi:
10.1109/CMPASS.1994.318449. url: https://dx.doi.org/10.1109/CMPASS.1994.
318449 (visited on 09/21/2012).

Motorola, Inc. (2003). SPI Block Guide V03.06. url: http://www.ee.nmt.edu/~teare/
ee308l/datasheets/S12SPIV3.pdf.

Mozak, Christopher P. (2011). Suppressing power supply noise using data scrambling in
double data rate memory systems. U.S. Patent 7,945,050. url: https://www.google.
com.ar/patents/US7945050.

Müller, Tilo and Michael Spreitzenbarth (2013). “FROST: Forensic Recovery of Scrambled
Telephones”. In: 11th International Conference on Applied Cryptography and Network
Security—ACNS 2013. Ed. by Michael Jacobson, Michael Locasto, Payman Mohassel,
and Reihaneh Safavi-Naini. Springer, pp. 373–388. isbn: 978-3-642-38980-1. doi: 10.
1007/978-3-642-38980-1_23. url: https://dx.doi.org/10.1007/978-3-642-
38980-1_23.

Murdoch, Steven J (2007). Covert channel vulnerabilities in anonymity systems. Tech. rep.
UCAM-CL-TR-706. University of Cambridge, Computer Laboratory. url: http://
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-706.pdf.

153

https://dx.doi.org/10.1016/S0016-0032(19)90474-1
https://dx.doi.org/10.1016/S0016-0032(19)90474-1
https://dx.doi.org/10.1016/S0016-0032(19)90474-1
https://dx.doi.org/10.1007/3-540-39799-X_31
https://dx.doi.org/10.1007/3-540-39799-X_31
https://dx.doi.org/10.1007/3-540-39799-X_31
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://dx.doi.org/10.1109/ASYNC.2002.1000311
https://dx.doi.org/10.1109/ASYNC.2002.1000311
https://dx.doi.org/10.1109/ASYNC.2002.1000311
https://dx.doi.org/10.1109/CMPASS.1994.318449
https://dx.doi.org/10.1109/CMPASS.1994.318449
https://dx.doi.org/10.1109/CMPASS.1994.318449
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
https://www.google.com.ar/patents/US7945050
https://www.google.com.ar/patents/US7945050
https://dx.doi.org/10.1007/978-3-642-38980-1_23
https://dx.doi.org/10.1007/978-3-642-38980-1_23
https://dx.doi.org/10.1007/978-3-642-38980-1_23
https://dx.doi.org/10.1007/978-3-642-38980-1_23
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-706.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-706.pdf

Bibliography

Murdoch, Steven J and Stephen Lewis (2005). “Embedding covert channels into TCP/IP”.
In: 7th International Workshop on Information Hiding—IH 2005. Ed. by Mauro Barni,
Jordi Herrera-Joancomartí, Stefan Katzenbeisser, and Fernando Pérez-González. Berlin,
Heidelberg, Germany: Springer, pp. 247–261. isbn: 978-3-540-31481-3. doi: 10.1007/
11558859_19. url: https://dx.doi.org/10.1007/11558859_19.

National Institute of Standards and Technology (1999). Recommended Elliptic Curves
for Federal Government Use. url: http://csrc.nist.gov/groups/ST/toolkit/
documents/dss/NISTReCur.pdf.

National Institute of Standards and Technology (2001). FIPS Publication 197: An-
nouncing the Advanced Encryption Standard (AES). url: http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

National Institute of Standards and Technology (2002). FIPS 180-2, Secure Hash Standard,
Federal Information Processing Standard (FIPS), Publication 180-2. url: http://csrc.
nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.

Needham, Roger M and David J Wheeler (1997). TEA extensions. Tech. rep. Cambridge
University, Cambridge, UK. url: http://www.cix.co.uk/~klockstone/xtea.pdf.

Von Neumann, John (1951). “Various Techniques Used in Connection with Random
Digits”. In: Journal of Research of the National Bureau of Standards Applied Math
Series 12, pp. 36–38. url: https://dornsifecms.usc.edu/assets/sites/520/
docs/VonNeumann-ams12p36-38.pdf.

NXP Semiconductors N.V. (2011). 2N7002 product datasheet. url: http://www.nxp.
com/documents/data_sheet/2N7002.pdf.

NXP Semiconductors N.V. (2014a). MFRC522 Standard 3V MIFARE reader solution
(112138) Rev 3.8. url: http://www.nxp.com/documents/data_sheet/MFRC522.pdf.

NXP Semiconductors N.V. (2014b). UM10204 I2C-bus specification and user manual.
url: http://www.nxp.com/documents/user_manual/UM10204.pdf.

O’Flynn, Colin and Zhizhang (David) Chen (2014). “ChipWhisperer: An Open-Source
Platform for Hardware Embedded Security Research”. English. In: Constructive Side-
Channel Analysis and Secure Design—COSADE 2014. Ed. by Emmanuel Prouff.
Vol. 8622. Lecture Notes in Computer Science. Springer, pp. 243–260. isbn: 978-3-
319-10174-3. doi: 10.1007/978-3-319-10175-0_17. url: https://dx.doi.org/10.
1007/978-3-319-10175-0_17.

O’Flynn, Colin and Zhizhang (David) Chen (2015). “Side channel power analysis of
an AES-256 bootloader”. In: 28th Canadian Conference on Electrical and Computer
Engineering—CCECE 2015. IEEE, pp. 750–755. doi: 10.1109/CCECE.2015.7129369.
url: https://dx.doi.org/10.1109/CCECE.2015.7129369.

154

https://dx.doi.org/10.1007/11558859_19
https://dx.doi.org/10.1007/11558859_19
https://dx.doi.org/10.1007/11558859_19
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://www.cix.co.uk/~klockstone/xtea.pdf
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
http://www.nxp.com/documents/data_sheet/2N7002.pdf
http://www.nxp.com/documents/data_sheet/2N7002.pdf
http://www.nxp.com/documents/data_sheet/MFRC522.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
https://dx.doi.org/10.1007/978-3-319-10175-0_17
https://dx.doi.org/10.1007/978-3-319-10175-0_17
https://dx.doi.org/10.1007/978-3-319-10175-0_17
https://dx.doi.org/10.1109/CCECE.2015.7129369
https://dx.doi.org/10.1109/CCECE.2015.7129369

Bibliography

Open Mobile Alliance (2016). Lightweight Machine to Machine Technical Specification
Candidate Version 1.0. url: http://www.openmobilealliance.org.

Osvik, Dag Arne, Adi Shamir, and Eran Tromer (2006). “Cache attacks and countermea-
sures: the case of AES”. In: Topics in Cryptology—CT-RSA 2006: The Cryptographers’
Track at the RSA Conference 2006. Ed. by David Pointcheval. Springer, pp. 1–20. isbn:
978-3-540-32648-9. doi: 10.1007/11605805_1. url: https://dx.doi.org/10.1007/
11605805_1.

Oswald, David and Christof Paar (2011). “Breaking Mifare DESFire MF3ICD40: power
analysis and templates in the real world”. In: 13th International Workshop on Cryp-
tographic Hardware and Embedded Systems—CHES 2011. Ed. by Bart Preneel and
Tsuyoshi Takagi. Springer, pp. 207–222. isbn: 978-3-642-23951-9. doi: 10.1007/978-
3-642-23951-9_14. url: https://dx.doi.org/10.1007/978-3-642-23951-9_14.

Oswald, Elisabeth, Stefan Mangard, Christoph Herbst, and Stefan Tillich (2006). “Prac-
tical Second-Order DPA Attacks for Masked Smart Card Implementations of Block
Ciphers”. In: Topics in Cryptology—CT-RSA 2006: The Cryptographers’ Track at
the RSA Conference 2006. Ed. by David Pointcheval. Berlin, Heidelberg, Germany:
Springer, pp. 192–207. isbn: 978-3-540-32648-9. doi: 10.1007/11605805_13. url:
https://dx.doi.org/10.1007/11605805_13.

Page, Dan (2002). Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.
IACR Cryptology ePrint Archive, Report 2002/169. url: https://eprint.iacr.org/
2002/169.

Philips Semiconductors (1997). I2S bus specification. url: https://www.sparkfun.com/
datasheets/BreakoutBoards/I2SBUS.pdf.

Preneel, Bart and Paul C van Oorschot (1995). “MDx-MAC and building fast MACs from
hash functions”. In: Advances in Cryptology—CRYPTO ’95: 15th Annual International
Cryptology Conference. Ed. by Don Coppersmith. Springer, pp. 1–14. isbn: 978-3-540-
44750-4. doi: 10.1007/3-540-44750-4_1. url: https://dx.doi.org/10.1007/3-
540-44750-4_1.

Preneel, Bart and Paul C van Oorschot (1996). “On the security of two MAC algorithms”.
In: Advances in Cryptology—EUROCRYPT ’96: International Conference on the
Theory and Application of Cryptographic Techniques. Ed. by Ueli Maurer. Springer,
pp. 19–32. isbn: 978-3-540-68339-1. doi: 10.1007/3-540-68339-9_3. url: https://
dx.doi.org/10.1007/3-540-68339-9_3.

Quisquater, Jean-Jacques and David Samyde (2001). “Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards”. In: International Conference on
Research in Smart Cards—E-smart 2001. Ed. by Isabelle Attali and Thomas Jensen.
Berlin, Heidelberg, Germany: Springer, pp. 200–210. isbn: 978-3-540-45418-2. doi:

155

http://www.openmobilealliance.org
https://dx.doi.org/10.1007/11605805_1
https://dx.doi.org/10.1007/11605805_1
https://dx.doi.org/10.1007/11605805_1
https://dx.doi.org/10.1007/978-3-642-23951-9_14
https://dx.doi.org/10.1007/978-3-642-23951-9_14
https://dx.doi.org/10.1007/978-3-642-23951-9_14
https://dx.doi.org/10.1007/11605805_13
https://dx.doi.org/10.1007/11605805_13
https://eprint.iacr.org/2002/169
https://eprint.iacr.org/2002/169
https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
https://dx.doi.org/10.1007/3-540-44750-4_1
https://dx.doi.org/10.1007/3-540-44750-4_1
https://dx.doi.org/10.1007/3-540-44750-4_1
https://dx.doi.org/10.1007/3-540-68339-9_3
https://dx.doi.org/10.1007/3-540-68339-9_3
https://dx.doi.org/10.1007/3-540-68339-9_3

Bibliography

10.1007/3-540-45418-7_17. url: https://dx.doi.org/10.1007/3-540-45418-
7_17.

Rahmati, Amir, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber, Wayne P. Burleson,
and Kevin Fu (2012). “TARDIS: Time and Remanence Decay in SRAM to Implement
Secure Protocols on Embedded Devices without Clocks”. In: 21st USENIX Secu-
rity Symposium—USENIX Security 12. Bellevue, WA: USENIX, pp. 221–236. url:
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/rahmati.

Ravi, Srivaths, Anand Raghunathan, and Srimat Chakradhar (2004). “Tamper resistance
mechanisms for secure embedded systems”. In: 17th International Conference on VLSI
Design—ICVD 2004. IEEE, pp. 605–611. doi: 10.1109/ICVD.2004.1260985. url:
https://dx.doi.org/10.1109/ICVD.2004.1260985.

Raza, Shahid, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt (2013).
“Lithe: Lightweight Secure CoAP for the Internet of Things”. In: Sensors Journal,
IEEE 13.10, pp. 3711–3720. doi: 10.1109/JSEN.2013.2277656. url: https://dx.
doi.org/10.1109/JSEN.2013.2277656.

Raza, Shahid, Daniele Trabalza, and Thiemo Voigt (2012). “6LoWPAN compressed
DTLS for CoAP”. In: 8th International Conference on Distributed Computing in
Sensor Systems—DCOSS 2012. IEEE, pp. 287–289. doi: 10.1109/DCOSS.2012.55.
url: https://dx.doi.org/10.1109/DCOSS.2012.55.

Rescorla, Eric (2008). TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES
Galois Counter Mode (GCM) (RFC5289). doi: 10.17487/rfc5289. url: https://
tools.ietf.org/rfc/rfc5289.txt.

Rescorla, Eric and Nagendra Modadugu (2006). Datagram Transport Layer Security
(RFC4347). doi: 10.17487/rfc4347. url: https://tools.ietf.org/rfc/rfc4347.
txt.

Reshadi, Mehrdad and Nikil Dutt (2005). “Generic Pipelined Processor Modeling and
High Performance Cycle-Accurate Simulator Generation”. In: Conference on Design,
Automation and Test in Europe—DATE ’05. Vol. 2. Washington, DC, USA: IEEE,
pp. 786–791. isbn: 978-0-769-52288-3. doi: 10.1109/DATE.2005.166. url: https://
dx.doi.org/10.1109/DATE.2005.166.

Rivest, Ronald L, Adi Shamir, and Len Adleman (1978). “A method for obtaining digital
signatures and public-key cryptosystems”. In: Communications of the ACM 21.2,
pp. 120–126. doi: 10.1145/359340.359342. url: https://dx.doi.org/10.1145/
359340.359342.

156

https://dx.doi.org/10.1007/3-540-45418-7_17
https://dx.doi.org/10.1007/3-540-45418-7_17
https://dx.doi.org/10.1007/3-540-45418-7_17
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://dx.doi.org/10.1109/ICVD.2004.1260985
https://dx.doi.org/10.1109/ICVD.2004.1260985
https://dx.doi.org/10.1109/JSEN.2013.2277656
https://dx.doi.org/10.1109/JSEN.2013.2277656
https://dx.doi.org/10.1109/JSEN.2013.2277656
https://dx.doi.org/10.1109/DCOSS.2012.55
https://dx.doi.org/10.1109/DCOSS.2012.55
https://dx.doi.org/10.17487/rfc5289
https://tools.ietf.org/rfc/rfc5289.txt
https://tools.ietf.org/rfc/rfc5289.txt
https://dx.doi.org/10.17487/rfc4347
https://tools.ietf.org/rfc/rfc4347.txt
https://tools.ietf.org/rfc/rfc4347.txt
https://dx.doi.org/10.1109/DATE.2005.166
https://dx.doi.org/10.1109/DATE.2005.166
https://dx.doi.org/10.1109/DATE.2005.166
https://dx.doi.org/10.1145/359340.359342
https://dx.doi.org/10.1145/359340.359342
https://dx.doi.org/10.1145/359340.359342

Bibliography

Rivest, Ronald L, Adi Shamir, and Len Adleman (1983). Cryptographic communications
system and method. U.S. Patent 4,405,829. url: http://www.google.com/patents/
US4405829.

Rosenfeld, Paul, Elliott Cooper-Balis, and Bruce Jacob (2011). “DRAMSim2: A Cycle
Accurate Memory System Simulator”. In: IEEE Computer Architecture Letters 10.1,
pp. 16–19. issn: 1556-6056. doi: 10.1109/L-CA.2011.4. url: https://dx.doi.org/
10.1109/L-CA.2011.4.

Rowland, Craig H. (1997). “Covert Channels in the TCP/IP Protocol Suite”. In: First
Monday 2.5. doi: 10.5210/fm.v2i5.528. url: https://dx.doi.org/10.5210/fm.
v2i5.528.

Sadasivan, Shyam (2006). White paper: An Introduction to the ARM Cortex-M3 Processor.
ARM Ltd.

Schoof, René (1985). “Elliptic curves over finite fields and the computation of square roots
mod p”. In: Mathematics of Computation 44.170, pp. 483–494. doi: 10.2307/2007968.
url: https://dx.doi.org/10.2307/2007968.

Schoof, René (1995). “Counting points on elliptic curves over finite fields”. In: Journal
de théorie des nombres de Bordeaux 7.1, pp. 219–254. doi: 10.5802/jtnb.142. url:
https://dx.doi.org/10.5802/jtnb.142.

Schuhmacher, Frank (2014). DPA contest v4 – Hall of Fame (AES-256 RSM Implemen-
tation). url: http://www.dpacontest.org/v4/rsm_hall_of_fame.php.

Shah, Gaurav and Matt Blaze (2009). “Covert channels through external interference”.
In: 3rd USENIX Workshop on Offensive Technologies—WOOT ’09. Berkeley, CA, USA:
USENIX Association, pp. 3–3. url: http://dl.acm.org/citation.cfm?id=1855876.
1855879.

Shockley, William (1952). “A unipolar ‘field-effect’ transistor”. In: Proceedings of the
IRE 40.11, pp. 1365–1376. doi: 10.1109/JRPROC.1952.273964. url: https://dx.
doi.org/10.1109/JRPROC.1952.273964.

Silverman, Joseph H. (1986). The Arithmetic of Elliptic Curves. Vol. 106. Graduate
Texts in Mathematics. New York, NY, USA: Springer. isbn: 978-1-475-71922-2. doi:
10.1007/978-1-4757-1920-8. url: https://dx.doi.org/10.1007/978-1-4757-
1920-8.

Skorobogatov, Sergei Petrovich (2004). “Semi-invasive attacks: a new approach to hard-
ware security analysis”. PhD thesis. University of Cambridge, Darwin College. url:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf.

157

http://www.google.com/patents/US4405829
http://www.google.com/patents/US4405829
https://dx.doi.org/10.1109/L-CA.2011.4
https://dx.doi.org/10.1109/L-CA.2011.4
https://dx.doi.org/10.1109/L-CA.2011.4
https://dx.doi.org/10.5210/fm.v2i5.528
https://dx.doi.org/10.5210/fm.v2i5.528
https://dx.doi.org/10.5210/fm.v2i5.528
https://dx.doi.org/10.2307/2007968
https://dx.doi.org/10.2307/2007968
https://dx.doi.org/10.5802/jtnb.142
https://dx.doi.org/10.5802/jtnb.142
http://www.dpacontest.org/v4/rsm_hall_of_fame.php
http://dl.acm.org/citation.cfm?id=1855876.1855879
http://dl.acm.org/citation.cfm?id=1855876.1855879
https://dx.doi.org/10.1109/JRPROC.1952.273964
https://dx.doi.org/10.1109/JRPROC.1952.273964
https://dx.doi.org/10.1109/JRPROC.1952.273964
https://dx.doi.org/10.1007/978-1-4757-1920-8
https://dx.doi.org/10.1007/978-1-4757-1920-8
https://dx.doi.org/10.1007/978-1-4757-1920-8
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

Bibliography

STMicroelectronics N.V. (2011a). PM0081: STM32F40xxx and STM32F41xxx Flash
Programming Manual. url: http://www.bdtic.com/DownLoad/ST/PM0081.pdf.

STMicroelectronics N.V. (2011b). RM0090: Reference manual STM32F405xx,
STM32F407xx, STM32F415xx and STM32F417xx advanced ARM-based 32-bit MCUs.
url: http://www.st.com/resource/en/reference_manual/DM00031020.pdf.

STMicroelectronics N.V. (2012). DM37051: ARM Cortex-M4 STM32F405xx STM32F407xx
datasheet. url: http://www.st.com/resource/en/datasheet/stm32f407vg.pdf.

STMicroelectronics N.V. (2015a). DM88500: STM32F030x4 STM32F030x6 STM32F030x8
STM32F030xC datasheet. url: http:/ / www. st . com/ resource / en/ datasheet /
stm32f030c8.pdf.

STMicroelectronics N.V. (2015b). Releasing your creativity: STM32F0 series Mainstream
32-bit MCUs. url: http://www.st.com/resource/en/brochure/brstm32f0.pdf.

STMicroelectronics N.V. (2015c). RM0360 Reference manual STM32F030x4/6/8/C and
STM32F070x6/B advanced ARM-based 32-bit MCUs. url: http://www.st.com/
resource/en/datasheet/stm32f030f4.pdf.

Stüttgen, Johannes (2015). “On the Viability of Memory Forensics in Compromised
Environments”. PhD thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Department of Computer Science 1, p. 134. urn: urn:nbn:de:bvb:29-opus4-63160.
url: https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-63160.

Stüttgen, Johannes and Michael Cohen (2013). “Anti-forensic resilient memory acquisi-
tion”. In: Digital Investigation 10, S105–S115. doi: 10.1016/j.diin.2013.06.012.
url: https://dx.doi.org/10.1016/j.diin.2013.06.012.

Stüttgen, Johannes, Stefan Vömel, and Michael Denzel (2015). “Acquisition and analysis of
compromised firmware using memory forensics”. In: Digital Investigation 12.Supplement
1, S50–S60. doi: 10.1016/j.diin.2015.01.010. url: https://dx.doi.org/10.
1016/j.diin.2015.01.010.

Tate, John T (1974). “The arithmetic of elliptic curves”. In: Inventiones mathematicae
23.3, pp. 179–206. issn: 1432-1297. doi: 10.1007/BF01389745. url: https://dx.doi.
org/10.1007/BF01389745.

Tehranipoor, Mohammad and Farinaz Koushanfar (2010). “A Survey of Hardware Trojan
Taxonomy and Detection”. In: IEEE Design & Test of Computers 27.1, pp. 10–25. doi:
10.1109/MDT.2010.7. url: https://dx.doi.org/10.1109/MDT.2010.7.

Tillich, Stefan and Johann Großschädl (2007). “Power Analysis Resistant AES Implemen-
tation with Instruction Set Extensions”. English. In: 9th International Workshop on
Cryptographic Hardware and Embedded Systems—CHES 2007. Ed. by Pascal Paillier

158

http://www.bdtic.com/DownLoad/ST/PM0081.pdf
http://www.st.com/resource/en/reference_manual/DM00031020.pdf
http://www.st.com/resource/en/datasheet/stm32f407vg.pdf
http://www.st.com/resource/en/datasheet/stm32f030c8.pdf
http://www.st.com/resource/en/datasheet/stm32f030c8.pdf
http://www.st.com/resource/en/brochure/brstm32f0.pdf
http://www.st.com/resource/en/datasheet/stm32f030f4.pdf
http://www.st.com/resource/en/datasheet/stm32f030f4.pdf
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-63160
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-63160
https://dx.doi.org/10.1016/j.diin.2013.06.012
https://dx.doi.org/10.1016/j.diin.2013.06.012
https://dx.doi.org/10.1016/j.diin.2015.01.010
https://dx.doi.org/10.1016/j.diin.2015.01.010
https://dx.doi.org/10.1016/j.diin.2015.01.010
https://dx.doi.org/10.1007/BF01389745
https://dx.doi.org/10.1007/BF01389745
https://dx.doi.org/10.1007/BF01389745
https://dx.doi.org/10.1109/MDT.2010.7
https://dx.doi.org/10.1109/MDT.2010.7

Bibliography

and Ingrid Verbauwhede. Vol. 4727. Lecture Notes in Computer Science. Berlin, Hei-
delberg, Germany: Springer, pp. 303–319. isbn: 978-3-540-74734-5. doi: 10.1007/978-
3-540-74735-2_21. url: https://dx.doi.org/10.1007/978-3-540-74735-2_21.

Tsudik, Gene (1992). “Message authentication with one-way hash functions”. In: ACM
SIGCOMM Computer Communication Review 22.5, pp. 29–38. doi: 10.1145/141809.
141812. url: https://dx.doi.org/10.1145/141809.141812.

Tsunoo, Yukiyasu, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi Miyauchi
(2003). “Cryptanalysis of DES implemented on computers with cache”. In: 5th Inter-
national Workshop of Cryptographic Hardware and Embedded Systems—CHES 2003.
Ed. by Colin D. Walter, Çetin K. Koç, and Christof Paar. Springer, pp. 62–76. isbn:
978-3-540-45238-6. doi: 10.1007/978-3-540-45238-6_6. url: https://dx.doi.
org/10.1007/978-3-540-45238-6_6.

Tunstall, Michael, Carolyn Whitnall, and Elisabeth Oswald (2014). “Masking Tables—An
Underestimated Security Risk”. In: 20th International Workshop on Fast Software
Encryption—FSE 2013. Ed. by Shiho Moriai. Berlin, Heidelberg, Germany: Springer,
pp. 425–444. isbn: 978-3-662-43933-3. doi: 10.1007/978-3-662-43933-3_22. url:
https://dx.doi.org/10.1007/978-3-662-43933-3_22.

Ukil, Arijit, Soma Bandyopadhyay, Abhijan Bhattacharyya, and Arpan Pal (2013).
“Lightweight Security Scheme for Vehicle Tracking System Using CoAP”. In: Interna-
tional Workshop on Adaptive Security—ASPI ’13. Zurich, Switzerland: ACM, 3:1–3:8.
isbn: 978-1-450-32543-1. doi: 10.1145/2523501.2523504. url: https://dx.doi.
org/10.1145/2523501.2523504.

Ukil, Arijit, Soma Bandyopadhyay, Abhijan Bhattacharyya, Arpan Pal, and Tulika Bose
(2014). “Auth-Lite: Lightweight M2M Authentication reinforcing DTLS for CoAP”. In:
International Conference on Pervasive Computing and Communications Workshops—
PERCOM Workshops 2014. IEEE, pp. 215–219. doi: 10.1109/PerComW.2014.6815204.
url: https://dx.doi.org/10.1109/PerComW.2014.6815204.

Van Herrewege, Anthony, Vincent van der Leest, André Schaller, Stefan Katzenbeisser,
and Ingrid Verbauwhede (2013). “Secure PRNG seeding on commercial off-the-shelf
microcontrollers”. In: 3rd International Workshop on Trustworthy Embedded Devices—
TrustED ’13. New York, NY, USA: ACM, pp. 55–64. isbn: 978-1-450-32486-1. doi:
10.1145/2517300.2517306. url: https://dx.doi.org/10.1145/2517300.2517306.

Van Herrewege, Anthony and Ingrid Verbauwhede (2014). “Software Only, Extremely
Compact, Keccak-based Secure PRNG on ARM Cortex-M”. In: 51st Annual Design
Automation Conference—DAC ’14. San Francisco, CA, USA: ACM, 111:1–111:6. isbn:
978-1-450-32730-5. doi: 10.1145/2593069.2593218. url: https://dx.doi.org/10.
1145/2593069.2593218.

159

https://dx.doi.org/10.1007/978-3-540-74735-2_21
https://dx.doi.org/10.1007/978-3-540-74735-2_21
https://dx.doi.org/10.1007/978-3-540-74735-2_21
https://dx.doi.org/10.1145/141809.141812
https://dx.doi.org/10.1145/141809.141812
https://dx.doi.org/10.1145/141809.141812
https://dx.doi.org/10.1007/978-3-540-45238-6_6
https://dx.doi.org/10.1007/978-3-540-45238-6_6
https://dx.doi.org/10.1007/978-3-540-45238-6_6
https://dx.doi.org/10.1007/978-3-662-43933-3_22
https://dx.doi.org/10.1007/978-3-662-43933-3_22
https://dx.doi.org/10.1145/2523501.2523504
https://dx.doi.org/10.1145/2523501.2523504
https://dx.doi.org/10.1145/2523501.2523504
https://dx.doi.org/10.1109/PerComW.2014.6815204
https://dx.doi.org/10.1109/PerComW.2014.6815204
https://dx.doi.org/10.1145/2517300.2517306
https://dx.doi.org/10.1145/2517300.2517306
https://dx.doi.org/10.1145/2593069.2593218
https://dx.doi.org/10.1145/2593069.2593218
https://dx.doi.org/10.1145/2593069.2593218

Bibliography

Vömel, Stefan and Felix C Freiling (2011). “A Survey of Main Memory Acquisition and
Analysis Techniques for the Windows Operating System”. In: Digital Investigation 8.1,
pp. 3–22. issn: 1742-2876. doi: 10.1016/j.diin.2011.06.002. url: https://dx.
doi.org/10.1016/j.diin.2011.06.002.

Vömel, Stefan and Felix C Freiling (2012). “Correctness, atomicity, and integrity: defining
criteria for forensically-sound memory acquisition”. In: Digital Investigation 9.2, pp. 125–
137. issn: 17422876. doi: 10.1016/j.diin.2012.04.005. url: https://dx.doi.
org/10.1016/j.diin.2012.04.005.

Vömel, Stefan and Johannes Stüttgen (2013). “An Evaluation Platform for Forensic
Memory Acquisition Software”. In: Digital Investigation 10, S30–S40. doi: 10.1016/j.
diin.2013.06.004. url: https://dx.doi.org/10.1016/j.diin.2013.06.004.

Wang, Zhenghong and Ruby B Lee (2007). “New cache designs for thwarting software
cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News
35.2, pp. 494–505. doi: 10.1145/1273440.1250723. url: https://dx.doi.org/10.
1145/1273440.1250723.

Wendzel, Steffen and Jörg Keller (2012). “Systematic Engineering of Control Protocols
for Covert Channels”. In: 13th International Conference on Communications and
Multimedia Security—CMS 2012. Ed. by Bart De Decker and David W. Chadwick.
Berlin, Heidelberg, Germany: Springer, pp. 131–144. isbn: 978-3-642-32805-3. doi:
10.1007/978-3-642-32805-3_11. url: https://dx.doi.org/10.1007/978-3-642-
32805-3_11.

Widmer, Albert X. and Peter A. Franaszek (1983). “A DC-Balanced, Partitioned-Block,
8B/10B Transmission Code.” In: IBM Journal of Research and Development 27.5,
pp. 440–451. doi: 10.1147/rd.275.0440. url: https://dx.doi.org/10.1147/rd.
275.0440.

Wyns, Philippe and Richard L Anderson (1989). “Low-temperature operation of silicon
dynamic random-access memories”. In: IEEE Transactions on Electron Devices 36.8,
pp. 1423–1428. doi: 10.1109/16.30954. url: https://dx.doi.org/10.1109/16.
30954.

Ye, Wu, Narayanan Vijaykrishnan, Mahmut Kandemir, and Mary Jane Irwin (2000).
“The Design and Use of Simplepower: A Cycle-accurate Energy Estimation Tool”.
In: 37th Annual Design Automation Conference—DAC ’00. Los Angeles, California,
USA: ACM, pp. 340–345. isbn: 978-1-581-13187-1. doi: 10.1145/337292.337436.
url: https://dx.doi.org/10.1145/337292.337436.

Yiu, Joseph (2009). The Definitive Guide to the ARM Cortex-M3. 2nd. Newton, MA,
USA: Newnes. isbn: 978-1-856-17963-8.

160

https://dx.doi.org/10.1016/j.diin.2011.06.002
https://dx.doi.org/10.1016/j.diin.2011.06.002
https://dx.doi.org/10.1016/j.diin.2011.06.002
https://dx.doi.org/10.1016/j.diin.2012.04.005
https://dx.doi.org/10.1016/j.diin.2012.04.005
https://dx.doi.org/10.1016/j.diin.2012.04.005
https://dx.doi.org/10.1016/j.diin.2013.06.004
https://dx.doi.org/10.1016/j.diin.2013.06.004
https://dx.doi.org/10.1016/j.diin.2013.06.004
https://dx.doi.org/10.1145/1273440.1250723
https://dx.doi.org/10.1145/1273440.1250723
https://dx.doi.org/10.1145/1273440.1250723
https://dx.doi.org/10.1007/978-3-642-32805-3_11
https://dx.doi.org/10.1007/978-3-642-32805-3_11
https://dx.doi.org/10.1007/978-3-642-32805-3_11
https://dx.doi.org/10.1147/rd.275.0440
https://dx.doi.org/10.1147/rd.275.0440
https://dx.doi.org/10.1147/rd.275.0440
https://dx.doi.org/10.1109/16.30954
https://dx.doi.org/10.1109/16.30954
https://dx.doi.org/10.1109/16.30954
https://dx.doi.org/10.1145/337292.337436
https://dx.doi.org/10.1145/337292.337436

Bibliography

Yourst, Matt T. (2007). “PTLsim: A Cycle Accurate Full System x86-64 Microarchi-
tectural Simulator”. In: IEEE International Symposium on Performance Analysis of
Systems Software—ISPASS 2007, pp. 23–34. doi: 10.1109/ISPASS.2007.363733.
url: https://dx.doi.org/10.1109/ISPASS.2007.363733.

Zander, Sebastian, Grenville Armitage, and Philip Branch (2007). “A survey of covert
channels and countermeasures in computer network protocols”. In: IEEE Communica-
tions Surveys & Tutorials 9.3, pp. 44–57. doi: 10.1109/COMST.2007.4317620. url:
https://dx.doi.org/10.1109/COMST.2007.4317620 (visited on 10/08/2012).

Zandwijk, Jan Peter van (2015). “A mathematical approach to NAND flash-memory
descrambling and decoding”. In: Digital Investigation 12, pp. 41–52. doi: 10.1016/j.
diin.2015.01.003. url: https://dx.doi.org/10.1016/j.diin.2015.01.003.

161

https://dx.doi.org/10.1109/ISPASS.2007.363733
https://dx.doi.org/10.1109/ISPASS.2007.363733
https://dx.doi.org/10.1109/COMST.2007.4317620
https://dx.doi.org/10.1109/COMST.2007.4317620
https://dx.doi.org/10.1016/j.diin.2015.01.003
https://dx.doi.org/10.1016/j.diin.2015.01.003
https://dx.doi.org/10.1016/j.diin.2015.01.003

	Cover
	Contents
	Abstract
	Zusammenfassung
	Acknowledgment
	Introduction
	Security Quantification
	Embedded Devices as a Target
	Contributions
	Outlook

	Power Analysis
	Introduction
	Related Work
	Contributions
	Outline

	Background
	Transistors and Switching Loss
	Power Analysis
	Cortex-M Barrel Shifter

	Code Polymorphism as a DPA Countermeasure
	Displaced Loading
	Exclusive OR Instruction
	Register Transfer Instructions
	Bitwise Masking Instructions

	Efficient Runtime Recompilation
	Virtual Machine Internals
	Examples
	Workflow
	Hardware True Random Number Generators

	Experimental Evaluation
	Static Analysis of Target
	Masking Results
	Entropy Collection

	Conclusion

	Timing Channels
	Introduction
	Related Work
	Contributions
	Outline

	Background
	Factors Influencing Execution Time in Modern CPUs
	STM32 Cortex-M4 Specifics

	Cycle-Accurate Timing Simulation
	Execution Time Prediction
	Architectural Modeling

	Evaluation
	Experimental Setup
	Experimental Results
	Semi-automatic vetting

	Conclusion and Outlook

	Covert Channels
	Introduction
	Attacker Scenario: Covert Communication
	Abuse of Anti-EMI Features
	Related Work
	Contributions
	Outline

	Background
	Electromagnetic Interference
	EMI Countermeasures

	Implementation of the Covert Channel
	Implementation using Spread Spectrum Clocking
	Implementation using Rise Time Control

	Data Encoding
	Channel Capacity

	Practical Example
	Conclusion

	Hardware Trust Anchors
	Introduction
	Related Work
	Contributions
	Outline

	Background
	Transport Layer Security
	TLS with Pre-shared Keys
	Elliptic Curve Cryptography
	OMA Lightweight M2M

	Implementation with Symmetric Cryptography HSMs
	Implementation with Asymmetric Cryptography HSM
	Security Evaluation
	Security with Asymmetric Cryptography HSMs
	Security with Symmetric Cryptography HSMs
	Attack Scenarios and Assumptions
	Theoretic Analysis
	Practical Analysis

	Conclusion

	DRAM Scrambling
	Introduction
	Contributions
	Outline

	Background
	Scrambling
	Linear-feedback Shift Registers
	DRAM
	LFSR RAM Scrambling

	Problem Description
	Towards Descrambling
	Practical LFSR Algorithms
	Calculating Memory Offsets
	Distinguishing the Scrambler Type
	Attacking Constant Scrambling
	Attacking Randomized Scrambling
	Stencil Attack
	Mathematical Approach
	Deinterleaving of Memory

	Experimental Evaluation
	Investigated Machines
	Applying the Stencil Attack
	Dual Channel Mode and Decay Rate
	Remanence Effect of DDR3 Memory

	Conclusion and Outlook

	Conclusion
	Absence of a Security Silver Bullet
	Security Silver Linings

	Bibliography

		joe@johannes-bauer.com
	2016-12-10T11:15:50+0100
	reliant
	Johannes Bauer
	Official version for publication

