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Abstract—We present a new class of covert channels which
can be created by utilizing common hardware but that cannot
be detected by such. Our idea is to abuse anti-EMI features
of a processor to create a covert channel on the physical layer.
Thus, the sender uses the invariants in how digital signals are
encoded over analog channels to covertly transport information.
This leaked data is present on the wire bound connections of
the compromised device, but is also by definition present in the
vicinity of the device and can be picked up by radio equipment.
As the covert channel is present only on the physical layer, the
data on all layers above, as well as the timing behavior on
those layers is indistinguishable from uncompromised devices.
We present two example implementations of such channels using
RS-232 as the carrier and use a common oscilloscope to decode
the resulting covert channel. Using this setup, we observed symbol
rates of around 5 baud. We derive the theoretical upper bound of
the covert channels bandwidth and discuss the factors by which
it is influenced.

I. INTRODUCTION

On the lowest layer of the OSI model, data is transmitted
over a physical medium like a wire. In order to do this, the
source data is encoded into physical parameters of the medium
such as voltages or currents and thus comprises a signal f(t).
Any physical medium is subject to noise which can be modeled
as an additive component to f . This means that the receiver
will not receive the pure signal f(t) but rather f(t) + g(t)
where g models the noise. Tolerance to noise on the physical
layer is achieved by certain tolerance levels implemented by
the interpretation function at the receiver. So, if D denotes
the function which translates the analog signal on the physical
layer to code words on the data link layer, this function satisfies
the following equation for error-free transmission:

D(f(t) + g(t)) = D(f(t)) (1)

As an example, consider the transmission of a single byte using
RS-232. Note that we selected RS-232 because the simplicity
of the protocol allows for a precise presentation of our core
ideas. Protocols like USB, SPI or I2C would work equally
well. In Fig. 1, ten RS-232 symbols are transmitted on the
physical wire: one start bit, 8 data bits and one stop bit. Since
the bit order is LSB-first, in the example the value 0xb1 is

transmitted. Instead of letting involuntary noise g(t) act upon
the signal we could similarly specifically craft a function that
would slightly change the signal in a way that would not alter
the outcome of the interpretation function D. Examples for this
could be marginally lower or higher voltages, slightly faster or
slower transitions between the low and high states or a small
phase shift of the signal. Two of these examples are shown in
Fig. 2. The signal is sampled at the indicated points in time.
The variations of the transition speed or signal phase do not
matter on the digital layer as long as the signal value for the
bit value 0 would stay below the input low threshold VIL and as
long as it would stay above VIH for the value 1 at the sampling
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points. The interpretation D is guaranteed to remain identical
and thus the physical property is preserved.

The observation we make in this paper is the follow-
ing: If g(t) is misused to encode secret information by
slight variations in voltage or timing while ensuring that
D(f(t) + g(t)) = D(f(t)), then there is no easy way for
the standard receiver to decode or even detect this information.
However, if g(t) can be measured by a specialized receiver
with an interpretation function D′ (such as an oscilloscope
with custom recovery algorithms), it is possible to extract the
information while from a data link point of view, there is no
observable difference between the modified and unmodified
signals. An attacker who knows the exact signal deviations
caused by the implanted covert channel could easily build a
specialized receiver with dedicated hardware. Such hardware
could be an FPGA development board for which the total
hardware cost of the receiver would be somewhere in the range
of around $100.

A. Attacker Scenario: Covert Communication

Consider an attacker who wishes to covertly access secrets
that are inserted into sensitive security hardware (like a tamper-
resistant key store) after it has been deployed. In order to
achieve his goal, the attacker acquires access to the supply chain
between a silicon manufacturer and the original equipment
manufacturer (OEM), as illustrated in Fig. 3. Within the supply
chain the attacker is able to intercept and modify the hardware,
and later can get close to the hardware in the field to access
the secrets without actually having physical access to it.

Clearly, an attacker with physical access to a device has
many possibilities to create backdoors. We however assume
that (1) the attacker can only physically access and modify
the device once, and (2) the modified devices are subject
to intensive security checks by the OEM before deployment.
Therefore, covertness cannot be achieved by classical hardware
backdoors [15] and the extraction of information from hardware
by physical access [10, 11] is not an option. Note that such
attack scenarios are not uncommon in practice [1], and in
common end-of-line test bedding environment scenarios run
by OEMs (such as a bed of nails test fixture) the focus is only
on the digital semantic correctness of the devices under test.
A covert channel in the way we describe in this paper would
pass such a digital test effortlessly, even when probed for with
more sophisticated methods like fuzzing.

We demonstrate that the logic that is necessary to perform
such an attack is minimal – in fact, many modern devices
already have abundance of possible circuitry on board which
would allow deployment of such a channel. To demonstrate
that little hardware modification is needed we show that the
already present circuitry in off-the-shelf hardware is completely
sufficient to construct a covert channel with it by doing only
modifications of software (i.e., the firmware).

B. Abuse of Anti-EMI Features

In this paper, we show that anti-EMI functionality can
be misused to implement a covert channel and want to
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Fig. 3. Example of supply chain poisoning

raise awareness of such threats. Electromagnetic interference
(EMI) is an unwanted and inconvenient side effect which
every electronic device exhibits. Governmental regulations
limit the maximum amount of emitted EMI and so the
signal processing logic of many electronic devices contains
suppressing techniques such as Spread Spectrum Clocking
(SSC) or Rise Time Control to reduce the EMI emission. Our
idea is to use such facilities as a covert communication medium.
Both options are available on standard microprocessors today
and can be used by software to reduce radiated emission.
This allows us to create a covert channel with the following
properties:

1) because it can be realized in software, sending informa-
tion on the channel is easy and can be performed with a
wide range of commercial off-the-shelf hardware, and

2) receiving and decoding the information requires special-
ized measurement equipment such as oscilloscopes or
custom hardware. This renders the channel invisible to
an observer on the data link layer.

C. Related Work

The notion of covert channels goes back to Lampson in
1973 [16] when he distinguished timing channels and resource
channels. Timing channels encode information in the inter-
packet timing delay, while resource channels use packet
ordering or the state of a packet to transport information. Later,
Kemmerer [14] generalized the notion to scenarios with any
form of shared resources. While the concept evolved in military
contexts, today, the threats of covert communication have
reached the mainstream and various implementations based on
many different communication methods, such as IP, exist as
research prototypes [9, 20, 25] and “in the wild” [1, 5]. While
the specific encoding and methods for creating covert channels
were refined, the actual implementation almost always focuses
on protocol layers at or above the data link layer [13, 17, 21, 31].
Consequently defensive methods, i.e., attempts to detect a
covert channel, usually assume a packet abstraction such as the
one provided by the Internet Protocol [4, 8, 18, 33]. In contrast,
our work is completely independent of such an abstraction.
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There also exists some work that makes use of physical
properties of hardware or communication on the data link layer
to implement covert communication [6, 12, 15, 27, 30]. For
example, work on hardware Trojans falls into this category,
e.g., King et al. [15], Tehranipoor and Koushanfar [30], Farag,
Lerner, and Patterson [6]. They embed malicious circuitry in
FPGA targets and therefore augment the present hardware
in order to create backdoors. In contrast, our approach can
be implemented using functionality that is already present
in MCUs and can often be achieved by only modifying the
firmware. Moreover, existing work is detectable by observing
the digital behavior of the circuit.

Work by Iakymchuk et al. [12] that uses heat dissipation to
implement a covert channel can be regarded very close to our
work, but their proof of concept implementation also requires
hardware modification by altering the FPGA netlist. Shah
and Blaze [27] use the physical properties of the transport
medium to implement a covert channel and encode covert
information by selectively disrupting the physical carrier. Their
attack however requires special radio frequency equipment, i.e.,
specialized sending and receiving hardware since a deliberate
carrier disturbance is not possible with benign hardware.

Interesting observations are presented by Genkin et al. [7];
they analyzed low-cost methods of key recovery in systems
which exhibit electromagnetic side channel emission by using
a Software Defined Radio (SDR). Their recovery approach
could be applied to recovery of our EM covert channel as well.

D. Contributions

In this paper, which is the extended version of the presenta-
tion at HOST 2016 [2], we make the following contributions:
• We introduce a new class of covert channels that uses sub-

digital means to transport information, i.e., it abuses the
degrees of freedom in the representation of digital signals
on physical channels. In a sense, instead of looking at
the inter-packet delay, our covert channels modify timing
properties within packets, i.e., we use intra-packet timing
channels. To the best of our knowledge, we are not aware
of any other work that formulates and demonstrates this
idea.

• We argue that these channels pose a relevant threat by
showing that they can be implemented easily in software.
We demonstrate this by using anti-EMI features that are
supported by many commercial off-the-shelf processors.
Such channels have an asymmetry property in that it is easy
to send information over the channel but it requires special
hardware to decode the covertly transmitted information.
This in turn means that deliberate, targeted effort is
required that specifically looks at aspects of the signal in
order to detect the presence of such a covert channel. Our
proof-of-concept example implementation demonstrates
two different ways to encode information on RS-232 as
the carrier protocol.

Since we exploit sub-digital features, the attacker necessarily
needs either physical access to the compromised medium over
which the information is sent or close physical proximity to

the device. This is because by definition our covert channel is
present only in the analog/digital encoding ambiguity and as a
side effect in the form of parasitic electromagnetic emission.
A standard receiver or relay (for example a network switch in
the case of Ethernet) will destroy the covert signal because
it digitally interprets and reconstructs passed on signals. This
means an attacker has to deploy a decoding unit somewhere
within the network (for example by intercepting the wire) or use
radio frequency equipment in the vicinity of the compromised
device. We argue that this is a necessary downside of this new
type of covert channel.

Note that for our example implementation we chose RS-232
for convenience only. Our approach could likewise be applied
to many other carrier protocols, including but not limited to
I2C, SPI, I2S or USB [19, 23, 24]. Even though RS-232 has
largely disappeared from the desktop computing environment,
it is still widely used in embedded environments as a means
of chip-to-chip communication. The fact that the output driver
configuration is independent of the selected function of the
MCUs port pin means that all peripheral functions on that port
pin are affected by our channel. Our second approach affects
the main system clock of the microcontroller (and because all
peripheral clocks are derived from that clock source) directly
leads to the consequence that all output peripherals are affected
in exactly the same manner as the RS-232 transport. This
includes all peripherals that are supported by the used MCU. An
attacker only needs to be able to monitor at least one affected
channel in order to recover the covertly transmitted data. That
these properties are independent of the used communication
protocol makes our approach very versatile.

E. Outline

This paper is structured as follows: In Sect. II, we discuss
the signal theoretical background information necessary to
understand the used carrier signal and also describe the anti-
EMI mechanisms that modern microcontrollers employ. We
continue by demonstrating two concrete covert channels in
Sects. III-A and III-B which we implement with a Cortex-M4
microcontroller [28]. Section IV gives a brief overview of how
the transmitted symbols are encoded in our case and elaborates
on the theoretic maximum channel capacity. Then we continue
to explain how our channel can be applied to a real-world
scenario in Sect. V. Finally, Sect. VI gives a summary and an
outlook on what future work could be based on these methods.

II. BACKGROUND: ELECTROMAGNETIC INTERFERENCE

Digital square wave signals are composed of superimposed
sine waves of different frequencies and amplitudes. Any square
wave signal can be decomposed into its components by means
of the Fourier transformation [3]. For a square wave with
n harmonics, i.e., n superimposed integer multiples of the
fundamental frequency, the signal amplitude at a point in time
ϕ is given by

f(ϕ) =

n∑
i=0

1

2i+ 1
sin((2i+ 1)ϕ). (2)
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Note that the second derivative of this function dϕ is

f ′′(ϕ) = −
n∑

i=0

(2i+ 1) sin((2i+ 1)ϕ). (3)

By solving f ′′ = 0, one can see that that the function has an
inflection point at ϕ = 0, which yields f ′(0) = n + 1. This
means, the maximum slope of the composed digital signal,
n+1, is directly related to the number of contained harmonics.
Thus, an ideal square wave signal has a positive edge slope
of infinity and consequently contains an infinite number of
harmonics.

Real-world digital signals cannot change instantaneously and
the transit from the low to the high state or vice versa takes
a certain amount of time. This time is referred to as the rise
time when a signal does a low to high transition and fall time
in the inverse case. Since the following argumentation applies
to both rise and fall times analogously, we only discuss rise
times in detail. By convention, the measured rise time begins
when the signal has reached 10% of its peak value and ends
when it is at the 90% mark. This is illustrated in Fig. 4.

The edge that constitutes the low to high transition also
has a certain slope, usually measured in voltage per unit
of time. A steeper slope intuitively corresponds to a shorter
rise time and vice versa. We refer to both during this paper
interchangeably. The steeper the slope of a digital signal is, the
more harmonics are contained within the signal. Additionally,
part of the dissipated power of signals is emitted in the form
of electromagnetic interference (EMI). Intuitively spoken, this
means that the device involuntarily acts as a radio transmitter.
This effect becomes especially significant at high frequencies.
It is therefore advantageous to limit the slope of the signal to
the amount that is necessary by the constraints of the connected
peripheral. Any signal with steeper slope only increases EMI
though the presence of additional high-frequency harmonics,
but will not benefit the actual data transmission.

Apart from the actual rise time of the signal, two other
factors influence the emission spectrum of any device: One is
the clock frequency which also directly affects the frequencies
and amplitudes of all contained harmonics. The other is the
antenna efficiency of the parasitic antenna that is constituted
by the integrated circuit itself. Antenna efficiency is highly

nonlinear over the frequency spectrum. In order to reduce
unwanted electromagnetic emission, one could theoretically
change any of these factors. While changing the characteristic
of the parasitic antenna is not possible in software, changing
the clock frequency easily is. The main idea of spread spectrum
clocking is therefore to vary the clock frequency periodically
in order to smear the emitted spectrum. Although this means
that the emitted energy (i.e., the integral of the power over
the frequency spectrum) stays nearly the same, spectral peaks
which could cause trouble in an EMI examination can easily
be avoided, as Fig. 5 shows.

For spread spectrum clocking, there are two parameters that
influence how the clock frequency f changes over time: The
period at which a frequency is modulated is called P and the
associated modulation frequency is called fm. The amplitude
of the modulation is referred to as the modulation depth and
is abbreviated with d. The example in Fig. 6 uses triangular
clock modulation.

Microcontroller manufacturers are aware of EMI problems
and have therefore equipped many of the newer devices with
the possibility to limit the rise and fall times of digital signals
by use of special configuration registers [28]. According to
the needs of the application, the analog properties of the
signal can be modified within certain limits. Even with enabled
memory protection by means of the MPU, in many scenarios
at least some of these registers (such as the GPIO risetime
configuration) will be accessible to unprivileged application
software.

For implementing our covert channels, we chose a general-
purpose microcontroller of the ARM Cortex-M family, the
STM32F407VG [28]. Chips within that family are priced
starting from $2 up to around $20, depending on the amount
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Fig. 6. Frequency of a spread-spectrum clock signal

4



10

100

1000

10000

100000

1e+06

20 40 60 80 100 120 140 160 180 200

F
F

T
 m

a
g
n
it
u
d
e

Fre que ncy

Without S S C
With S S C

Re gulatory re quireme nt

Fig. 5. FFT magnitude of a clock signal with and without Spread Spectrum Clocking and exemplary regulatory permissible maximum to pass EMI regulations

of peripherals they are equipped with. The STM32F407 is
approximately the middle of that price range. They are built
into a variety of embedded devices such as automotive ECUs
(Electronic Control Units), RFID readers and consumer appli-
ances like wireless routers, printers or air conditioners [26].

III. IMPLEMENTATION OF THE COVERT CHANNEL

The anti-EMI facilities that microcontrollers provide are
usually configurable in software. An application programmer
must be able to decide how and when these mechanisms are
enabled since some may have a detrimental effect on the overall
performance of the system. For example, while a certain anti-
EMI measure may improve electromagnetic emission, it could
also simultaneously have a negative effect on the sampling
precision of an analog-digital converter (ADC). Therefore, it
makes sense to give the application programmer the ability
to turn the anti-EMI features on and off at will. This means
the chip itself is equipped with the functionality to directly
influence how much EMI is emitted at any point in time —
a fact that we exploit in the following sections in order to
construct a covert channel.

A. Implementation using Spread Spectrum Clocking

We now show how to implement a covert channel using
spread spectrum clocking (SSC). While SSC can arguably be
implemented in lots of ways, the devices we looked at (the
ST32F4xx family) provide means to modulate the clock with
a triangle signal of up to 10 kHz and a modulation depth d of
0.25% to a maximum of 2% [29]. Either of both variables can
be used to encode data. In order to achieve covertness, it is
beneficial to choose the parameters so that the resulting signals
look like they have been affected by naturally occurring clock
jitter. For comparison, the STM32F4xx datasheet [29] lists a

typical peak-to-peak period jitter of ±200ps which is always
present while at 168 MHz a worst-case 2% SSC modulation
depth corresponds to a period anomaly of only around 119ps.

In our experiments, we used both variants: modulating
the SSC modulation depth on one hand and modulating the
modulation frequency on the other. For our experiments we
never changed both variables at once, but always kept one of the
two constant. Therefore, if modulation depth was modulated,
the modulation frequency was chosen to be fixed at 10 kHz.
For data transmission using a variable modulation frequency,
the modulation depth was constant at 0.25%.

One drawback of choosing the SSC unit on the ST32F4xx
family is that each change between states requires the internal
phase-locked loop (PLL) to be shut off before the CPU will
allow modification of the SSC registers [28]. This is a compar-
atively lengthy procedure and takes approximately 170µs in
our case. Shutting down the PLL requires the system clock to
be switched to a different clock source; typically this will be
the much slower internal RC oscillator. This is an operation
which would appear suspicious to someone monitoring a
continuous stream of output data with an oscilloscope or similar
measurement equipment.

The advantage of using SSC is that the covert information
is encoded in what resembles ordinary jitter. Here, d directly
corresponds to the amplitude of artificially generated jitter
while fm corresponds to the rate at which the jitter amplitude
changes.

Recovery was performed with a Agilent DSO-X 3014A
oscilloscope. We triggered on a rising edge of the carrier and
dislocated the trigger point one bit length in time, effectively
showing the jitter which was artificially generated by the
SSC. This data was transmitted to a PC using the USBTMC
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(USB Test and Measurement Class) protocol. The achieved
covert symbol rate was about 2 baud using constant 10 kHz
modulation frequency and three distinct modulation depths
(i.e., three distinct symbols).

The limiting factor for this type of covert channel is the
long fixed time which is necessary by hardware constraints
to switch from one state to another. For each such change,
the PLL has to be stopped and restarted, which takes a fixed
amount of time. Therefore, in order to covertly use the SSC
unit in order to transmit information, the transmission speed
(i.e. number of state changes per unit of time) would have to
be exceptionally low so that the time for the state change itself
becomes negligible.

B. Implementation using Rise Time Control

We now show how to implement a covert channel using a
completely different method than SSC, namely the rise time
control of the microcontroller unit (MCU).

The STM32F407VG which we used provides a facility to
modify the output speed of the general purpose input/output
(GPIO) pins in four different speed categories: 2 MHz, 25 MHz,
50 MHz and 100 MHz. Of those four, the measured average rise
times were 19ns, 4.3ns, 2.4ns and 2ns at Vcc = 3.3V. While
three of these (19ns, 4.3ns, 2ns) are trivially distinguishable
from each other we wanted to stress covertness of our
channel. This is why we chose to only select the 2.4ns and
2ns alternatives even though discriminating those options is
technically most challenging.

Note that the selection of output driver speed does not affect
the transmitted overt bit rate in any way; it only affects the slew
rate of the signal and therefore the theoretically maximally
achievable bandwidth using that output driver. For example,
Full Speed USB uses a 12 MBit/s data channel. For this
type of communication either one of the 25, 50 or 100 MHz
drivers could be used with no observable difference in the overt
communication. A plot that highlights the subtle differences in
rise time is shown in Fig. 7. It was captured using a Tektronix
MSO4034.
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Fig. 8. Ternary encoding of data bits with varying data clock rate

This channel has the advantage that state changes are
exceptionally fast in software and that access to the required
GPIO registers will usually be allowed even to unprivileged
software. That is, even when the chip’s MPU is used, access
to the relevant memory regions will usually be permitted even
to user space applications. Since the difference between the
two fastest output driver states is so marginal, the channel also
exhibits an outstanding covertness property. Furthermore, it is
versatile in the sense that it can be applied to any output which
does not require more than 50 MHz of signal bandwidth; it
is therefore applicable to a wide variety of output peripherals
(e.g. USB, I2C, SPI, etc.).

IV. DATA ENCODING

Depending on the number of discrete states that a receiver
can discriminate, an appropriate encoding can be chosen for
transmission of data. Concretely, we used a ternary encoding for
the SSC variant described in Sect. III-A and a binary encoding
for the rise time approach of Sect. III-B. Note that the choice
of encoding is orthogonal to the type of channel (i.e., SSC
channel or rise time channel) itself.

The ternary variant allows for trivial clock recovery: With
symbols −1, 0,+1, data bits are encoded by the transitions
between the idle state 0 to and from either the −1 or +1 state.
We furthermore require that only the transitions −1↔ 0 and
+1 ↔ 0 are valid and all other symbol transitions constitute
an invalid encoding.

Fig. 8 shows how this encoding looks in practice. Clock
recovery is trivial: the only restriction is that the frequency of
transmitted bits may not exceed the Nyquist frequency of the
recovery unit’s sampling rate—in other words, all three symbols
must at least appear long enough to be reliably detected but
they can appear arbitrarily longer.

When using binary encoding, the clock recovery of the
demodulated covert channel is more complex than with a
ternary approach. This is due to the fact that the actual data
that is transmitted is intermixed with the data clock, i.e., the
information at which point in time the data is valid. We relax
the difficulty by assuming that the malicious code within the
system is called at constant intervals, providing at least clock
stability (yet at unknown frequency) and that transmitted data
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SSC Rise time
Symbol Count (n) 3 2
Switch Time (t) 170 µs 120 ns
Overt symbol rate (bo) 10 kBd 115.2 kBd
Covert symbol rate (bc) 10 kBd 75.9 kBd

TABLE I
EXAMPLES OF CHANNEL PARAMETERS FOR OUR CASE

is random. This is not an unreasonable assumption because
leaked data will usually be cryptographic material. Even with
completely random data, however, there is often significant
disparity within the signal which complicates clock recovery. In
order to avoid this, a bit stuffing technique like 8B10B encoding
could be used to keep signal disparity to a minimum [32].
Alternatively whitening of the signal using a LFSR-based
synchronous additive scrambler could be used. The associated
cost would in both cases be a significantly increased malicious
code size, which is why we did not explore this further and
assumed our transmission signal to already be without relevant
bit-bias. Randomly generated cryptographic keys should exhibit
no significant bit-bias. An example of the actual measurement
data that we did this type of clock recovery on can be seen in
Fig. 9.

In summary, with these encodings, we achieved recovery
speeds of about 1 bit/sec for the SSC variant (symbol rate of
2 baud, ternary encoding) and about 2.5 bit/sec for the GPIO
variant (symbol rate of 5 symbols/sec, binary encoding).

A. Channel Capacity

After measuring the actual transmission speeds of our
implementation, we now investigate the theoretically achievable
maximum channel capacity. To calculate this, there are three
main variables that have to be taken into account:

1) Time it takes to switch between one output symbol to
another (t)

2) Number of distinct unique covert output symbols (n)
3) Effective baud rate bc in dependence on the overt channel

baud rate bo
The two channels that we demonstrate experimentally in
Sect. III-A and III-B use Spread Spectrum Clocking (SSC) on
one hand and rise time encoding on the other hand as the covert
transport. In the SSC example we modulated the modulation
depth d to create the channel. For the channels that we create,
an overview of the values of these constants is shown in Tab. I.
The symbol switch time t is significantly greater in the SSC
variant compared to the rise time variant due to the necessity
of stopping the phase locked loop (PLL) in order to change
the SSC registers of the ST32F407, as already explained in
Sect. III-A. It has also been explained there that the covert
symbol rate depends not only on the overt symbol rate, but
also on the transmitted data. For our examples we transmitted
alphanumeric protocol data which gave us the shown values
for bc.

The reason why there is data dependence of bc on bo can
intuitively explained by the fact that the number of edges within

the signal – and therefore the number of possibilities to inject
covert data – depends on the data. For a worst-case word of
0x00 the number of symbols is minimal (two edges per byte
of data) while for a constant stream of 0x55 it is maximal
(10 edges per byte of data). The plain text we transmitted had
on average 6.6 edges per transmitted byte of data.

For our calculations and in order to get a theoretical upper
bound, we assume the best case of having at least one edge
change per carrier symbol transmission. We then can derive
the maximum channel capacity symbol rate as

B =
log2 n

t+ b−1c

We provide exemplary calculation for the parameters chosen
in our actual experiments and we give an estimate for the
theoretical maximum capacity in Tab. II. In the experiments
we send alphanumeric data over the RS-232 overt channel with
an average of approximately 6.6 edges per transmitted byte,
accounting for the lower bc. For easy discriminability we also
limited the number of used symbols n significantly from the
theoretical maximum.

For our channel, the maximum bc would be equal to bo, i.e.
115.2 kBd, and we have 4 discrete symbols available. Therefore,
we could achieve B = 227.3kBd. On first glance, it is counter-
intuitive that the covert channel capacity could ever exceed the
overt channel capacity. This has several reasons:

1) The symbol count of the covert channel can exceed those
of the overt channel.

2) When the covert symbol rate depends on the transmitted
data, we assume the best-case values. In our example
this means that a constant overt data stream of 0x55
would need to be sent—something that does not make
sense in the real world.

3) Any computational power that is needed to control the
covert channel is neglected.

In conclusion, while the constructed covert channel might
theoretically have a large bandwidth, there are many practical
aspects which decrease the practically achievable bandwidth by
about five to six degrees of magnitude. Data that an attacker
would want to leak through such a channel is in all likelihood
cryptographic material that is exceptionally short. Therefore the
drawback of limited practical channel capacity is outweighed
by the advantage that the channel itself is difficult to detect.

For our experiments the factor that by far dominated the
achieved covert bandwidth was not the transmitter, but the

SSC Rise Time
Variable Experiment Theory Experiment Theory
n 3 193 2 4
t 170 µs 170 µs 120 ns 120 ns
bc 10 kBd 10 kBd 75.9 kBd 115.2 kBd
B 5.9 kBd 28.1 kBd 75.2 kBd 227.3 kBd

TABLE II
THEORETICALLY ACHIEVABLE B UNDER IDEAL CONDITIONS COMPARED

TO CONDUCTED EXPERIMENTAL EVALUATION
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Fig. 9. Rise time over time and the conditioned signal

receiver. Since we relied on general-purpose equipment, the
recovery bottleneck was the USBTMC transmission of the
results to the decoding PC.

V. PRACTICAL EXAMPLE

We now elaborate in depth on how an attack as motivated
in Sect. I-A could look like and how it could be applied in a
real-world example. As we stated before, our type of covert
channel can be applied to every scenario where the output
can be modulated in ways that are invariant for the digital
interpretation function. The channels we talked about in-depth
previously were wirebound channels which misused the ability
to influence involuntary electromagnetic emission.

Our idea can be explored further, however. In the realm of
analog circuitry it is quite common that fine-tuning of antenna
circuits is done in software. For vendors of radio frequency
equipment, this is rather convenient, since it enables them
to fine-tune antennas to their circuits using an completely
automatic process where the alternative would otherwise be
the manual tuning of hardware components such as variable
capacitors. Coincidentially, these framework conditions create
precisely such an opportunity for construction of a sub-digital
covert channel as we have shown before. The only difference
in this case is that modulation is not performed via slight
variations in rise time or signal phase, but in modulation of
the radio frequency amplitude that is emitted via an antenna.

Consider an Radio Frequency Identification (RFID) reader
that controls a door lock. Users get special RFID tokens which
they can hold in front of the RFID reader. The reader performs
a cryptographically secured handshake with the token and, upon
successful verification that the token is legitimate, opens the
door. Such RFID readers are manufactured by many different

companies and they all usually provide the functionality that
a user can set and store their own cryptographic keys on the
device. This is to ensure that the owner of the locking system is
the only one who knows the keys and can issue new, genuine,
tokens. We show that a vendor might have equipped such
a product with a backdoor that allows gaining access to the
system in an almost undetectable fashion by utilizing covert
channels as described.

Main MCU
SoC

Cryptographic
Coprocessor

NFC
RF Frontend

SPI I²C

USB

Fig. 10. Notional RFID reader with its components

Consider such a notional RFID reader and its basic design
which is shown in Fig. 10. The board consists of a main
processor (SoC) that is connected to various peripherals using
different buses. One is a cryptographic coprocessor which
contains master secrets that are written into the chip as part
of the commissioning of the reader board. Communication

8



between the cryptographic coprocessor and SoC is encrypted
and authenticated over a Serial Peripheral Interface (SPI). To
communicate with near-field communication (NFC) tokens,
a standard RF front end IC is used that is connected to
the antenna. Successful authentication requests on the NFC
interface are propagated over USB to an external lock control
unit.

In such a system, multiple sub-digital covert channels could
be existent: The most obvious one is a covert channel on the
SPI. If the chip manufacturer embedded a sub-digital covert
channel in the cryptographic coprocessor then the coprocessor
itself could be sending out its master secret periodically on
the SPI, for example by using rise time modulation as we
described before. These secrets are sufficiently short (256 bit)
such that transmission can be extremely slow (in the range of
1 bit per minute to prevent detection) and still would allow
an attacker to perform relatively fast recovery of the secrets
(in around 4,5 hours). From an attacker’s point of view, this
channel is hard to exploit because it requires either physical
access or high-end radio equipment.

If the firmware of the SoC itself were to be compromised,
then multiple covert channels could be constructed. Again, the
most obvious one is an on-board channel over any of the three
connected interfaces. The manufacturer of the RFID reader
would be able to steal keys of units in the field that have been
parameterized by customers, but again physical access to the
hardware itself or sophisticated equipment would be necessary.

The most interesting channel, however, is the one we hinted
at in the introduction of this section: Usually, RF front end
ICs allow software tuning of antennas in order to compensate
for small physical differences that occur during antenna manu-
facturing [22]. During production of the system, the antenna
is connected to the RF front end IC and software calibration
is performed in order to achieve impedance matching between
both components and therefore maximize field strength. This
means that it is possible to deliberately attenuate the RF signal
in software by introducing slight impedance mismatches and
effectively modulate the field in a user-customizable fashion.
Such a channel could leak keys that are required for successful
authentication over the RF interface. An attacker who would
have implanted this channel into an RFID reader would need
very little effort to perform channel data recovery.

An attacker who knows that the RFID reader is compromised
could analyze the modulated RF stream externally using
special receiving equipment (an oscilloscope would be sufficient
for regular 13.56 MHz HF-RFID communication) and learn
the keys that are required to authenticate against the reader,
effectively creating a backdoor.

All these channels have in common that they are sub-
digital in the sense that during test and auditing there will
usually be equipment used that cannot display the presence
of the covert channel because it is not part of the digital
representation. Concretely, when using a logic analyzer to
look at the transmitted bits there will be no difference visible
between a system that is backdoored and one that is not,
precisely because the channel itself is only present in the

gray area of encoding ambiguity of the analog interpretation of
digital signals. Similarly, the covert channel in the RF case will
not survive demodulation because the physical differences that
constitute the covert signal are so small that the demodulator
is indifferent towards them.

VI. CONCLUSION

We have demonstrated the existence and feasibility of intra-
packet physical layer covert channels. We implemented such
channels on commodity hardware by abusing already present
anti-EMI facilities. Concretely, we transmitted data via the
Spread Spectrum Clocking unit and also showed that the
approach works by modulating the rise time of an arbitrary
output pin. Thus, we have demonstrated the practical feasibility
of such attacks and by evaluating the channel capacity on real
hardware, we have shown that transmission bandwidth is still
high enough to be a relevant threat because it could be used
to leak cryptographic material.

These channels by definition exist on any device which
allows control over electromagnetic emission countermeasure
facilities. Since the speed of microcontrollers has increased
significantly in the last years, the necessity for presence of
such EMI countermeasure facilities has equally risen. Such
countermeasure facilities are therefore already present in a
wide variety of device by default as of today.

Something we wish to highlight is that data exfiltration is not
merely limited to wire bound tapping like we showed in our
examples. It would be practical for a real-world attacker with
more sophisticated equipment (such as a high-end spectrum
analyzer) to pick up the covertly transmitted data remotely. Our
rationale why this is possible is as plausible as it is catchy: The
only reason these EMI-countermeasure facilities are present
in modern microcontrollers in the first place is because they
cause an externally observable difference in radio frequency
electromagnetic emission. It is the prerequisite for them to
be effective. This means in turn that any EMI-manipulation
regardless of its physical carrier will simultaneously cause
subtle differences in the power levels within the EM spectrum.
So even when wire bound protocols are affected primarily it
is our estimate that remote, wireless data exfiltration is well
within the arsenal available to a sophisticated attacker.

In future work, we wish to further explore the possibility
of purely wireless data exfiltration. Another goal is to narrow
the gap between the channel capacity we were able to achieve
and the maximally achievable channel capacity by using more
sophisticated equipment. This can be done by using special-
purpose equipment such as an FPGA board in contrast to
general-purpose equipment like an oscilloscope.

Furthermore, while we focused on wire-bound physical layer
covert channels, wireless equivalents should warrant further
research.

Finally, we have shown that for security auditing, it is insuf-
ficient to only examine the inter-packet timing characteristic
and transmitted data on the data link layer. In order to detect
physical layer covert channels, one has to dig deeper and take
a look into the analog realm and intra-packet timing. The fact
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that such channels can be constructed easily and cheaply with
off-the-shelf hardware means that they are even simpler to
incorporate in custom hardware.

Because of their asymmetry property they are invisible to
standard receivers and therefore easy to miss. Since they pose a
threat to confidentiality and system integrity, we hope that our
work encourages further research in that area in order to reveal
where such channels might already exist in today’s real-world
systems.
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